
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,221,362 |
تعداد دریافت فایل اصل مقاله | 13,913,077 |
بررسی خواص الکترونی، اپتیکی و ترموالکتریکی نانو لولههای (8، 0) WSe2 و (8، 0)WSeS | ||
فصلنامه علمی اپتوالکترونیک | ||
مقاله 1، دوره 7، شماره 3 - شماره پیاپی 20، فروردین 1404، صفحه 9-20 اصل مقاله (1.28 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/jphys.2024.72177.1211 | ||
نویسندگان | ||
اصغر قادری1؛ آرش بوچانی* 2؛ علیرضا هژبری1؛ فاطمه حاج اکبری3 | ||
1گروه فیزیک واحد کرج، دانشگاه آزاد اسلامی ،کرج،ایران | ||
2گروه فیزیک واحد کرمانشاه،دانشگاه آزاد اسلامی ،کرمانشاه،ایران | ||
3عضو هیات علمی دانشگاه ازاد اسلامی واحد کرج- گروه فیزیک | ||
چکیده | ||
بر اساس محاسبات تئوری تابعی چگالی، خواص الکترونیکی، نوری و ترموالکتریک نانولولههای (8، 0) WSe2 و (8، 0)WSeS بررسی شدهاند. نانولوله (8، 0) WSe2 دارای شکاف انرژی 2/0 الکترون ولت است و این شکاف با افزودن یک اتم Se در آن کاهش مییابد. ساختار نوار نشان میدهد که نانولوله (8، 0) WSe2 نیمه هادی نوع p و ترکیب (8، 0)WSeS از نوع n است. بخش موهومی تابع دیالکتریک نشان میدهد که این دو ساختار در ناحیه مادون قرمز پاسخ اصلی به نور دارند و دارای شکافهای نوری کوچکی هستند، در حالی که توابع اتلاف انرژی نوری کمترین مقدار را در این ناحیه انرژی دارند. در دمای 200 کلوین، رقم ضریب مریت نانولوله (8، 0)WSeS بزرگتر از (8، 0) WSe2 است، اما در دماهای بالا ضریب توان نانولوله (8، 0) WSe2 بیشتر است، که نشان میدهد این مورد برای ژنراتورهای برق مناسب است. | ||
کلیدواژهها | ||
نظریه تابعی چگالی؛ نانو لوله (8؛ 0) WSe2و (8؛ 0)WSeS؛ الکترونیک؛ اپتیک؛ ترموالکتریک | ||
عنوان مقاله [English] | ||
Electronic, Optical and Thermoelectric Properties of WSe2(8,0) and WSeS(8,0) Nanotubes | ||
نویسندگان [English] | ||
Asghar Ghaderi1؛ arash boochani2؛ Alireza Hojabri1؛ Fatemeh Hajakbari3 | ||
1Department of Physics, Karaj Branch, Islamic Azad University, Karaj, iran | ||
2Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. | ||
3Department of physics, Karaj Branch,Islamic Azad University, Karaj, Iran | ||
چکیده [English] | ||
Based on density functional theory calculations, the electronic, optical and thermoelectric properties of WSe2(8,0) and WSeS(8,0) nanotubes have been investigated. The WSe2(8,0) nanotube has 0.2eV energy gap, and this gap is reduced by adding a Se atom to it. The band structure shows that the WSe2(8,0) nanotube is p-type semiconductor and WSeS(8,0) compound is n-type. The imaginary part of the dielectric function shows that these two structures have main response to the light in the infrared region and have small optical gaps, while the optical energy loss functions have the lowest values in this energy region. At a temperature of 200 K, the figure of merit coefficient of the WSeS(8,0) nanotube is larger than WSe2(8,0) one, but at high temperatures, the power factor coefficient of the WSe2(8,0) nanotube is higher, which shows that this case is suitable for power generators. | ||
کلیدواژهها [English] | ||
DFT, WSe2(8, 0) and WSeS(8, 0) Nanotubes, Electronic, Optic, Thermoelectric | ||
مراجع | ||
[1] Evarestov, R. A., Kovalenko, A. V., & Bandura, A. V. (2020). First-principles study on stability, structural and electronic properties of monolayers and nanotubes based on pure Mo (W) S (Se) 2 and mixed (Janus) Mo (W) SSe dichalcogenides. Physica E: Low-dimensional Systems and Nanostructures, 115, 113681.
[2] Evarestov, R. A., Kovalenko, A. V., & Bandura, A. V. (2020). First-principles study on stability, structural and electronic properties of monolayers and nanotubes based on pure Mo (W) S (Se) 2 and mixed (Janus) Mo (W) SSe dichalcogenides. Physica E: Low-dimensional Systems and Nanostructures, 115, 113681.
[3] Kamaei, S., Saeidi, A., Jazaeri, F., Rassekh, A., Oliva, N., Cavalieri, M., ... & Ionescu, A. M. (2020). An Experimental Study on Mixed-Dimensional 1D-2D van der Waals Single-Walled Carbon Nanotube-WSe 2 Hetero-Junction. IEEE Electron Device Letters, 41(4), 645-648.
[4] Chen, F., Wang, J., Li, B., Yao, C., Bao, H., & Shi, Y. (2014). Nanocasting synthesis of ordered mesoporous crystalline WSe2 as anode material for Li-ion batteries. Materials Letters, 136, 191-194.
[5] Yu, X. Y., Hu, H., Wang, Y., Chen, H., & Lou, X. W. (2015). Ultrathin MoS2 nanosheets supported on N‐doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. AngewandteChemie, 127(25), 7503-7506.
[6] Kim, Y., Huang, J. L., & Lieber, C. M. (1991). Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy. Applied physics letters, 59(26), 3404-3406.
[7] Hoseinzadeh, T., Solaymani, S., Kulesza, S., Achour, A., Ghorannevis, Z., Ţălu, Ş., ... &Mozaffari, N. (2018). Microstructure, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures. Journal of Electroanalytical Chemistry, 830, 80-87.
[8] Sinha, S. S., Yadgarov, L., Aliev, S. B., Feldman, Y., Pinkas, I., Chithaiah, P., ... & Tenne, R. (2021). MoS2 and WS2 nanotubes: Synthesis, structural elucidation, and optical characterization. The Journal of Physical Chemistry C, 125(11), 6324-6340.
[9] Achour, A., Arman, A., Islam, M., Zavarian, A. A., Basim Al-Zubaidi, A., &Szade, J. (2017). Synthesis and characterization of porous CaCO3 micro/nano-particles. The European Physical Journal Plus, 132(6), 267.
[10] Kong, D., Wang, H., Cha, J. J., Pasta, M., Koski, K. J., Yao, J., & Cui, Y. (2013). Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters, 13(3), 1341-1347.
[11] Roldan, R., López-Sancho, M. P., Guinea, F., Cappelluti, E., Silva-Guillén, J. A., &Ordejón, P. (2014). Momentum dependence of spin–orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Materials, 1(3), 034003.
[12] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., ... & Wang, F. (2010). Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4), 1271-1275.
[13] Kou, L., Frauenheim, T., & Chen, C. (2013). Nanoscale multilayer transition-metal dichalcogenide heterostructures: band gap modulation by interfacial strain and spontaneous polarization. The journal of physical chemistry letters, 4(10), 1730-1736.
[14] Wu, H. H., Meng, Q., Huang, H., Liu, C. T., & Wang, X. L. (2018). Tuning the indirect–direct band gap transition in the MoS 2− x Se x armchair nanotube by diameter modulation. Physical Chemistry Chemical Physics, 20(5), 3608-3613.
[15] Dong, J., Hu, H., Li, H., & Ouyang, G. (2021). Spontaneous flexoelectricity and band engineering in MS 2 (M= Mo, W) nanotubes. Physical Chemistry Chemical Physics, 23(36), 20574-20582.
[16] Durairasan, M., Karthik, P. S., Balaji, J., &Rajeshkanna, B. (2021). Enhanced visible light photocatalytic performance of WSe2/CNT hybrid photocatalysts that were synthesized by a facile hydrothermal route. Ionics, 27(5), 2151-2158.
[17] AYari, A., Boochani, A., &Rezaee, S. (2021). Electronic, optical, magneto-optical, and thermoelectric properties of the SrS graphene-like under Cr impurity. Chemical Physics, 551, 111355.
[18] Ghadri, A., Boochani, A., Hojabri, A., &Hajakbari, F. (2022). Electronic, optical and thermoelectric properties of WSe2–InN 2D interface: A DFT study. Solid State Communications, 354, 114889.
[19] Schwarz, K., Blaha, P., & Madsen, G. K. (2002). Electronic structure calculations of solids using the WIEN2k package for material sciences. Computer physics communications, 147(1-2), 71-76.
[20] Madsen, G. K., Blaha, P., Schwarz, K., Sjöstedt, E., &Nordström, L. (2001). Efficient linearization of the augmented plane-wave method. Physical Review B, 64(19), 195134.
[21] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., &Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 46(11), 6671.
[22] Perdew, J. P., Burke, K., &Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical review letters, 77(18), 3865.
[23] Von Barth, U., & Hedin, L. (1972). A local exchange-correlation potential for the spin polarized case. i. Journal of Physics C: Solid State Physics, 5(13), 1629.
[24] Gulans, A., Kontur, S., Meisenbichler, C., Nabok, D., Pavone, P., Rigamonti, S., ... &Draxl, C. (2014). Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. Journal of Physics: Condensed Matter, 26(36), 363202.
[25] Nabok, D., Gulans, A., &Draxl, C. (2016). Accurate all-electron G 0 W 0 quasiparticle energies employing the full-potential augmented plane-wave method. Physical Review B, 94(3), 035118.
[26] Hedin, L. (1965). New method for calculating the one-particle Green's function with application to the electron-gas problem. Physical Review, 139(3A), A796.
[27] Runge, E., & Gross, E. K. (1984). Density-functional theory for time-dependent systems. Physical review letters, 52(12), 997.
[28] Horsley, S. A. R., Artoni, M., & La Rocca, G. C. (2015). Spatial Kramers–Kronig relations and the reflection of waves. Nature Photonics, 9(7), 436-439.
[29] Rezazadeh, H., Hantehzadeh, M., &Boochani, A. (2022). Surface effect on electronic, Magnetic and optical propertieS of ptcoBi Half-HeuSler: a dft Study. Archives of Metallurgy and Materials, 67(1), 155-166.
[30] Tizroespeli, F., Parhizgar, S. S., Beheshtian, J., &Boochani, A. (2021). Electronic, magnetic and optical properties of Fe-doped nano-BN sheet: DFT study. Indian Journal of Physics, 95, 823-831.
| ||
آمار تعداد مشاهده مقاله: 335 تعداد دریافت فایل اصل مقاله: 193 |