| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,849 |
| تعداد مشاهده مقاله | 22,207,607 |
| تعداد دریافت فایل اصل مقاله | 14,930,107 |
تحلیل بهرهوری زیستمحیطی استانهای ایران: کاربردی از شاخص بهرهوری مالم کوئیست و تحلیل فضایی | ||
| فصلنامه علمی پژوهش های اقتصاد صنعتی | ||
| دوره 8، شماره 29، مهر 1403، صفحه 39-40 اصل مقاله (709.41 K) | ||
| نوع مقاله: کاربردی | ||
| شناسه دیجیتال (DOI): 10.30473/jier.2025.73506.1487 | ||
| نویسندگان | ||
| سمیه اعظمی* 1؛ هاوژین اژند2 | ||
| 1گروه اقتصاد دانشکده علوم اجتماعی دانشگاه رازی، کرمانشاه | ||
| 2کارشناس ارشد اقتصاد انرژی، گروه اقتصاد، دانشگاه رازی، کرمانشاه، ایران. | ||
| چکیده | ||
| بهبود کارایی زیستمحیطی یکی از راهکارهای مهم برای حصول توازن میان اهداف توسعه اقتصادی و حفاظت از محیطزیست است. این مطالعه تغییرات بهرهوری زیستمحیطی استانهای ایران را بین سالهای 1385 تا 1397 بررسی میکند و نقش شدت انرژی و شهرنشینی را در این تغییرات تحلیل میکند. این پژوهش در سه مرحله انجام می شود. ابتدا، انتشار دی اکسید کربن (تولید نامطلوب) استانها مطابق با IPCC محاسبه میشود. سپس، بهرهوری زیست محیطی مطابق با تحلیل پوششی دادهها و شاخص بهرهوری زیست محیطی مالم کوئیست غیرشعاعی فرامرزی (MNMCPI) محاسبه میشود. در پایان، با استفاده از تحلیل فضایی نقش شدت انرژی و شهرنشینی در تغییرات بهرهوری زیست محیطی استانها بررسی میشود. مطابق با روش DEA، به ترتیب بیشترین و کمترین تأثیر پذیری بهرهوری زیستمحیطی از اثر ابداعات و اثر کارایی است. همچنین، تولید ناخالص داخلی تأثیر مثبتی بر بهرهوری زیست محیطی استانها دارد. مطابق با تحلیل فضایی، بهرهوری زیستمحیطی در یک استان اثر سرریز مثبتی بر بهرهوری زیستمحیطی استانهای همجوار دارد. شدت انرژی تأثیر منفی و معنیدار بر بهرهوری زیستمحیطی دارد. رشد شهرنشینی به دلیل ساختار نامطلوب شهرها منجر به کاهش بهرهوری زیستمحیطی میشود. اصلاح سیاستهای انرژی، استفاده از تکنولوژی جدید تولیدی، ترویج انرژی پاک و همچنین اصلاح ساختار شهرها، ارایه تسهیلات رفاهی به روستانشینان و توسعه و بهبود ناوگان حمل و نقل عمومی میتواند به بهبود بهرهوری زیستمحیطی کمک نماید | ||
| کلیدواژهها | ||
| تابع فاصله جهتدار غیرشعاعی؛ شاخص بهرهوری زیستمحیطی مالم کوئیست غیر شعاعی فرامرزی؛ اقتصاد سنجی فضایی؛ توسعه پایدار | ||
| عنوان مقاله [English] | ||
| Environmental Productivity Analysis of Iranian Provinces: Application of Malmquist Productivity Index and Spatial Analysis | ||
| نویسندگان [English] | ||
| Havzhin Azhand2؛ | ||
| 2Master of Energy Economics, Department of Economics, Razi University, Kermanshah, Iran. | ||
| چکیده [English] | ||
| Improving environmental efficiency is one of the important solutions to achieve a balance between the goals of economic development and environmental protection. This study examines changes in environmental productivity of Iranian provinces between 2006 and 2018 and analyzes the role of energy intensity and urbanization in these changes. This research is done in three stages. First, the carbon dioxide emission (non-desirable output) of the provinces is calculated according to IPCC. Then, the environmental productivity is calculated according to the data envelopment analysis and the Meta-Frontier Non-Radial Malmquist CO2 Emission Performance Index (MNMCPI). In the end, using spatial analysis, the role of energy intensity and urbanization on the environmental productivity of the provinces is examined. According to the DEA method, the greatest and least impact of environmental productivity is the effect of innovations and the effect of efficiency, respectively. Also, the GDP has a positive effect on the environmental productivity of the provinces. According to spatial analysis, environmental productivity in one province has a positive spillover effect on the environmental productivity of neighboring provinces. Energy intensity has a negative and significant effect on environmental productivity. The growth of urbanization due to the unfavorable structure of cities leads to a decrease in environmental productivity. Reforming energy policies, using new production technology, promoting clean energy and also reforming the structure of cities, providing welfare facilities to villagers and developing and improving the public transport fleet can help improve environmental efficiency. | ||
| کلیدواژهها [English] | ||
| Non-Radial Directional Distance function, MNCPI, Spatial Econometrics, Sustainable Development | ||
| مراجع | ||
|
Abedi, S., Daneshmand, A., & Noorian, S. (2019). Investigating the factors affecting green productivity growth in the Iranian economy. Journal of Economic Research, 54(3), 633–658. https://doi.org/10.22059/jte.2019.72777 (In Persian)
Azami, S., Poor-Karimi, L., & Sadri, S. (2018). Total Factor CO2 Emission Performance in Iranian Manufacturing Industries: Meta-Frontier Non-Radial Malmquist Index Approach [Applicable]. Journal of Economic Modeling Research, 9(31), 131–163. https://doi.org/10.29252/jemr.8.31.131 (In Persian).
Bahaeedini, M. M., Sadeghi, Z., & Karimi Takloo, S. (2023). Investigating the impact of environmental regulations on the green productivity of Iranian provinces. Journal of Industrial Economics Research, 7(26), 33–48. https://doi.org/10.30473/jier.2024.70278.1437 (In Persian)
Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica: journal of the Econometric Society, 1393–1414. https://doi.org/10.2307/1913388
Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of economic theory, 70(2), 407–419. https://doi.org/10.1006/jeth.1996.0096
Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. journal of Environmental Management, 51(3), 229–240. https://doi.org/10.1006/jema.1997.0146
Dai, S., Tang, D., Li, Y., & Lu, H. (2025). Digital trade, trade openness, FDI, and green total factor productivity. International Review of Financial Analysis, 97, 103777. https://doi.org/10.1016/j.irfa.2024.103777
Deng, H., Bai, G., Shen, Z., & Xia, L. (2022). Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. Journal of Cleaner Production, 378, 134539. https://doi.org/10.1016/j.jclepro.2022.134539
Du, J., Zhong, Z., Shi, Q., Wang, L., Liu, Y., & Ying, N. (2024). Does government environmental attention drive green total factor productivity? Evidence from China. journal of Environmental Management, 366, 121766. https://doi.org/10.1016/j.jenvman.2024.121766
Färe, R., & Grosskopf, S. (2006). New directions: efficiency and productivity (Vol. 3). Springer Science & Business Media. https://doi.org/10.1007/0-387-27594-0
Fare, R., Grosskopf, S., & Kokkelenberg, E. C. (1989). Measuring plant capacity, utilization and technical change: a nonparametric approach. International economic review, 655–666. https://doi.org/10.2307/2526781
Fathi, B., & Mahdavi Adeli, M. H. (2015). Measuring industrial energy efficiency with CO2 emissions in developing countries using static and dynamic nonparametric models. Quarterly Energy Economics Review, 11(46), 61–87.
Lee, C.-C., & Lee, C.-C. (2022). How does green finance affect green total factor productivity? Evidence from China. Energy economics, 107, 105863. https://doi.org/10.1016/j.eneco.2022.105863
Li, P., & Ouyang, Y. (2020). Technical change and green productivity. Environmental and resource economics, 76(2), 271–298. https://doi.org/10.1007/s10640-020-00424-1
Mamipour, S., & Najafzadeh, B. (2018). Three-sector evaluation of environmental efficiency in Iran’s electricity industry: A network data envelopment analysis approach. Journal of Economic Research, 53(2), 437–463. https://sid.ir/paper/12040/fa (In Persian)
Meseibi Ataghsara, N., Elmi, Z., & Rasekhi, S. (2024). Green productivity growth in Iran’s industry and transportation sectors: An application of growth accounting using seemingly unrelated regressions. Journal of Economic Growth and Development Research, 14(54), 13–34. https://doi.org/10.30473/egdr.2023.68523.6750 (In Persian)
Parsa, P., Jalaei Esfandabadi, S. A., & Sadeghi, Z. (2016). Calculation of environmental technical efficiency in Iranian provinces. Journal of Environmental Economics and Natural Resources, 2(2), 81–103. https://doi.org/10.22054/eenr.2016.8408 (In Persian)
Qiu, S., Wang, Z., & Geng, S. (2021). How do environmental regulation and foreign investment behavior affect green productivity growth in the industrial sector? An empirical test based on Chinese provincial panel data. journal of Environmental Management, 287, 112282. https://doi.org/10.1016/j.jenvman.2021.112282
Rasekhi, S., & Khodamalhosseini, S. H. (2023). The effect of green technology and innovation on electronic waste production in selected OECD countries. Journal of Industrial Economics Research, 7(24), 69–82. https://doi.org/10.30473/jier.2024.70065.1431 (In Persian)
Sebri, M., & Ben-Salha, O. (2014). On the causal dynamics between economic growth, renewable energy consumption, CO2 emissions and trade openness: Fresh evidence from BRICS countries. Renewable and Sustainable Energy Reviews, 39, 14–23. https://doi.org/10.1016/j.rser.2014.07.033
Tanhaei, F., Arabpour, H., & Ahmadi Motlagh, S. D. (2024). Green productivity and its impact on industry (Case study: Kerman paper factory). In Proceedings of the 10th International Conference on Industrial and Systems Engineering. Civilica. https://civilica.com/doc/2119533 (In Persian)
Wen, H.-x., Cui, T., Wu, X.-q., & Nie, P.-y. (2024). Environmental insurance and green productivity: A firm-level evidence from China. Journal of Cleaner Production, 435, 140482. https://doi.org/10.1016/j.jclepro.2023.140482
Yan, Z., Jia, Y., & Zhang, B. (2024). Environmental protection taxes and green productivity: Evidence from listed companies in China. Economic Systems, 48(4), 101213. https://doi.org/10.1016/j.ecosys.2024.101213
Yang, Z., & Fang, H. (2020). Research on green productivity of chinese real estate companies—Based on SBM-DEA and TOBIT models. Sustainability, 12(8), 3122. https://doi.org/10.3390/su12083122
Yu, B. (2022). The impact of the internet on industrial green productivity: evidence from China. Technological Forecasting and Social Change, 177, 121527. https://doi.org/10.1016/j.techfore.2022.121527
Yu, Y., Choi, Y., Wei, X., & Chen, Z. (2017). Did China's regional transport industry enjoy better carbon productivity under regulations? Journal of Cleaner Production, 165, 777–787. https://doi.org/10.1016/j.jclepro.2017.07.105
Yue, H., Zhou, Z., & Liu, H. (2024). How does green finance influence industrial green total factor productivity? Empirical research from China. Energy Reports, 11, 914–924. https://doi.org/10.1016/j.egyr.2023.12.056
Zhang, D. (2021). Green credit regulation, induced R&D and green productivity: Revisiting the Porter Hypothesis. International Review of Financial Analysis, 75, 101723. https://doi.org/10.1016/j.irfa.2021.101723
Zhang, N., & Choi, Y. (2013a). A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy, 62, 324–332. https://doi.org/10.1016/j.enpol.2013.07.060
Zhang, N., & Choi, Y. (2013b). Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy economics, 40, 549–559. https://doi.org/10.1016/j.eneco.2013.08.012
Zhang, N., & Choi, Y. (2014). A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renewable and Sustainable Energy Reviews, 33, 50–59. https://doi.org/10.1016/j.rser.2014.01.064
Zhou, P., Ang, B., & Han, J. (2010). Total factor carbon emission performance: A Malmquist index analysis. Energy economics, 32(1), 194–201. https://doi.org/10.1016/j.eneco.2009.10.003
Zhou, P., Ang, B., & Wang, H. (2012). Energy and CO2 emission performance in electricity generation: a non-radial directional distance function approach. European journal of operational research, 221(3), 625–635. https://doi.org/10.1016/j.ejor.2012.04.022 | ||
|
آمار تعداد مشاهده مقاله: 331 تعداد دریافت فایل اصل مقاله: 264 |
||