
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,221,363 |
تعداد دریافت فایل اصل مقاله | 13,913,078 |
بررسی تأثیر گرافن اکساید بر تمایز سلولهای بنیادی مزانشیمی مغز استخوان به نورون در محیط کشت تمایزی | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
دوره 13، شماره 3 - شماره پیاپی 51، تیر 1404، صفحه 1-11 اصل مقاله (2.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2025.73762.1986 | ||
نویسندگان | ||
نوید دهنوی* 1؛ زهره معینی2؛ طاهره فروتن3 | ||
1گروه آموزش زیست شناسی، دانشگاه فرهنگیان، صندوق پستی 889-14665تهران، ایران | ||
2گروه کودکان، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران | ||
3گروه آموزشی علوم جانوری، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران | ||
چکیده | ||
هدف: نانوذرات میتوانند به آسانی از غشای پلاسمایی عبور کنند و از طریق وارد شدن به سلول و اثر بر مسیر سیگنالینگ داخل سلولی و یا از طریق مجتمعشدن در محیط کشت و تشکیل داربست بهعنوان سیستمهای سازگار و مکانیکی ایدهآل برای حمایت از تکثیر و تمایز سلولی در نظر گرفته شوند. هدف از این پژوهش بررسی تأثیر نانوذره گرافن اکساید بر تمایز عصبی سلولهای بنیادی مزانشیمی موشی میباشد. مواد و روشها: سلولهای بنیادی با روش فلاشینگ از مغز استخوان موش استخراج شد. در سه گروه مختلف بهمدت 14 روز کشت یافتند. گروه کنترل (سلولهای کشتیافته در محیط کشت تمایزی عصبی)، گروه1 (سلولهای کشتیافته در محیط کشت عمومی و حاوی دوز µg/ml 5/1 گرافن اکساید) و گروه2 (سلولهای کشتیافته در محیط کشت تمایزی عصبی و حاوی دوز µg/ml 5/1 گرافن اکساید). پس از گذشت 14 روز بهمنظور بررسی سمیت سلولی و میزان تمایز عصبی بهترتیب از تکنیک MTT و ICC استفاده شد. نتایج: براساس یافتههای تکنیک ایمونوسیتوشیمی و سمیتسنجی سلولی مشخص شد که هر سه مارکر تمایزی عصبی (Sox2، Btubulin ІІІ و MAP2) در گروه 1 و 2 همانند گروه کنترل بیان شده و همچنین گرافن اکساید در دوز مورداستفاده اثرات سمی بر روی سلولها نداشته است. نتیجهگیری: این یافتهها نشان میدهد که ترکیبی از گرافن اکساید با محیط کشت عمومی و بدون اضافهکردن هیچ فاکتور رشد عصبی دیگر میتواند همانند گروه کنترل سبب القای بیان پروتئینهای مهم دخیل در تمایز نورونی شود. | ||
کلیدواژهها | ||
تمایز عصبی؛ گرافن اکساید؛ سلول بنیادی؛ مغز استخوان | ||
عنوان مقاله [English] | ||
Exploring the Role of Graphene Oxide in Enhancing Neuronal Differentiation of Bone Marrow Mesenchymal Stem Cells | ||
نویسندگان [English] | ||
Navid Dehnavi1؛ Zohreh Moeini2؛ Tahereh Foroutan3 | ||
1Department of Biology Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran | ||
2Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran | ||
3Department of Biology, Faculty of Biological Sciences, University of Kharazmi, Tehran, Iran | ||
چکیده [English] | ||
Objective: Nanoparticles, owing to their unique physicochemical properties, have emerged as promising agents for biomedical applications, particularly in tissue engineering and regenerative medicine. Among the various types of nanoparticles, graphene oxide (GO) has garnered significant attention because of its biocompatibility and ability to facilitate cellular processes. This study investigated the role of graphene oxide nanoparticles in promoting neural differentiation of mouse mesenchymal stem cells (MSCs), focusing on the underlying mechanisms and outcomes of such interactions. Materials and Methods: In this study, bone marrow-derived stem cells were isolated from the femurs of mice using a flushing method. The cells were cultured in three distinct groups for 14 days. Control Group: Cells were cultured in a neural differentiation medium without additives. Group 1: Cells were cultured in a general culture medium supplemented with 1.5 µg/ml of graphene oxide. Group 2: Cells were cultured in neural differentiation medium with 1.5 µg/ml of graphene oxide. To assess the effects of graphene oxide on cell viability and differentiation, MTT assays were employed to evaluate cytotoxicity, while immunocytochemistry (ICC) techniques were used to detect the expression of neural differentiation markers, including Sox2, β-tubulin III, and MAP2. Results: The results demonstrated that both Group 1 and Group 2 exhibited expression of all three neural differentiation markers, Sox2, β-tubulin III, and MAP2, comparable to that of the control group. This indicates that the presence of graphene oxide, even in general culture medium, can promote neural differentiation. However, it is noteworthy that the dose of graphene oxide used in this study also exhibited no cytotoxic effects on the cells, suggesting a delicate balance between promoting differentiation and maintaining cell viability. The findings of this study underscore the potential of graphene oxide nanoparticles as a tool for enhancing neural differentiation of mesenchymal stem cells. The ability of GO to induce the expression of key proteins associated with neural differentiation without the need for additional nerve growth factors highlights its efficacy as a biocompatible scaffold. Conclusion: This study provides evidence that graphene oxide nanoparticles can effectively promote the neural differentiation of mouse mesenchymal stem cells. The ability to induce the expression of critical neural markers through both direct cellular interactions and scaffold formation makes graphene oxide a valuable component in neuroregenerative strategies. Future research should focus on elucidating the precise mechanisms by which graphene oxide influences cellular pathways and optimizing its application in stem cell therapy for neurological disorders. | ||
کلیدواژهها [English] | ||
Differentiation, Graphene oxide, Mesenchymal Stem Cell, Neuron | ||
مراجع | ||
Chapman, A. R., Frankel, M. S., & Garfinkel, M. S. (1999). Stem cell research and applications: monitoring the frontiers of biomedical research. American Association for the Advancement of Science. Washington, DC, USA.
Dehmelt, L., & Halpain, S. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome biology, 6, 1-10.
Geisert Jr, E. E., & Frankfurter, A. (1989). The neuronal response to injury as visualized by immunostaining of class III β-tubulin in the rat. Neuroscience letters, 102(2-3), 137-141.
Guo, R., Li, J., Chen, C., Xiao, M., Liao, M., Hu, Y., Liu, Y., Li, D., Zou, J., Sun, D., & Torre, V. (2021). Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids and Surfaces B: Biointerfaces, 200, 111590.
Guo, X., & Mei, N. (2014). Assessment of the toxic potential of graphene family nanomaterials. Journal of food and drug analysis, 22(1), 105-115.
Huber, G. E. R. D. A., & Matus, A. N. D. R. E. W. (1984). Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. Journal of Neuroscience, 4(1), 151-160.
Ikram, R., Shamsuddin, S. A. A., Mohamed Jan, B., Abdul Qadir, M., Kenanakis, G., Stylianakis, M. M., & Anastasiadis, S. H. (2022). Impact of graphene derivatives as artificial extracellular matrices on mesenchymal stem cells. Molecules, 27(2), 379.
Jiménez-Acosta, M. A., Hernández, L. J. R., Cristerna, M. L. P., Tapia-Ramírez, J., & Meraz-Ríos, M. A. (2022). Neuronal differentiation protocols of mesenchymal stem cells. Advances in Bioscience and Biotechnology, 13(1), 15-71.
Katsnelson, M. (2007). Graphene: Carbon in Two Dimensions. Materialstoday, 10(1-2), 20-27.
Kim, M., Ma, K. Y., Kim, H., Lee, Y., Park, J. H., & Shin, H. S. (2023). 2D materials in the display industry: status and prospects. Advanced Materials, 35(43), 2205520.
Kim, S. R.-S. (2013). Culture of Neural Cells and Stem Cells on Graphene. Tissue Engineering and Regenerative Medicine, 10(2), 39-46.
Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry, 19(17), 2457-2469.
Rawat, S., Jain, K.G., Gupta, D., Raghav, P.K., Chaudhuri, R., Pinky, Shakeel, A., Arora, V., Sharma, H., Debnath, D., & Kalluri, A. (2021). Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells. Nanomedicine, 16(22), 1963-1982.
Ramos, J. S. (1998). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 149, 411-423.
Stevanovic, M., Drakulic, D., Lazic, A., Ninkovic, D. S., Schwirtlich, M., & Mojsin, M. (2021). SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Frontiers in molecular neuroscience, 14, 654031.
Woodbury, D., Reynolds, K., & Black, I. B. (2002). Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. Journal of neuroscience research, 69(6), 908-917.
Xie, J. L., Wang, X. R., Li, M. M., Tao, Z. H., Teng, W. W., & Saijilafu. (2022). Mesenchymal stromal cell therapy in spinal cord injury: mechanisms and prospects. Frontiers in Cellular Neuroscience, 16, 862673.
Yang, K., Lu, R., Lu, J., Fan, S., Zhang, Q., Lou, Z., Ma, Y., Lu, G., Pan, R., & Zhang, J. (2022). Phenotypic and functional characterizations of mesenchymal stem/stromal cells isolated from human cranial bone marrow. Frontiers in Neuroscience, 16, 909256.
Yu, L., Wei, Y., Sun, H.X., Mahdi, A.K., Arteaga, C.A.P., Sakurai, M., Schmitz, D.A., Zheng, C., Ballard, E.D., Li, J., & Tanaka, N. (2021). Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell stem cell, 28(3), 550-567. | ||
آمار تعداد مشاهده مقاله: 178 تعداد دریافت فایل اصل مقاله: 110 |