
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,751 |
تعداد دریافت فایل اصل مقاله | 13,905,608 |
Optimizing Deep Learning Hyperparameters Using Interpolation-Based Optimization | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 مرداد 1404 اصل مقاله (535.52 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.74381.1304 | ||
نویسندگان | ||
Michael Oluwaseun Ayansiji* 1؛ Friday Zinzendoff Okwonu2 | ||
1Department of Industrial Mathematics, Admiralty University of Nigeria, Ibusa, Delta State, Nigeria. | ||
2Department of Mathematics, Delta State University, Abraka, Delta State, Nigeria. | ||
چکیده | ||
Hyperparameter optimization (HPO) is essential for maximizing the performance of deep learning models. Traditional approaches, such as grid search and Bayesian Optimization (BO), are widely used but can be computationally expensive. We present Interpolation-Based Optimization (IBO), a novel framework that employs piecewise polynomial interpolation to estimate optimal hyperparameters from sparse evaluations efficiently. IBO achieves substantial computational savings by constructing deterministic interpolants with linear per-iteration complexity of O(n.d^3), in contrast to the cubic O(n^3) cost associated with BO. Empirical studies on the MNIST dataset show that IBO attains 98.0% accuracy with a 39% reduction in runtime (12 iterations vs. 18) and no statistically significant difference from BO, p = 0.12. In higher-dimensional, lower-cost settings, such as ResNet-18 on CIFAR-10, performance degrades, highlighting a trade-off between dimensionality and efficiency. More generally, IBO is well-suited for resource-constrained settings due to its simplicity, determinism, and computational efficiency. Future work will explore hybrid methods to address scalability problems and extend IBO to more complex modeling architectures, such as transformers. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Deep learning؛ Hyperparameter optimization؛ Interpolation-based optimization؛ Polynomial interpolation؛ Efficient model tuning | ||
مراجع | ||
[1] Amini, A., Dolatshahi, M., Kerachian, R. (2023). “Effects of automatic hyperparameter tuning on the performance of multi-variate deep learning-based rainfall nowcasting”. Water Resources Research, 59(6), doi:https://doi.org/10.1029/2022WR032789. [3] Bergstra, J., Bengio, Y. (2012). “Random search for hyper-parameter optimization”. Journal of Machine Learning Research, 13, 281-305. [4] Bull, A.D. (2011). “Convergence rates of efficient global optimization algorithms”. Journal of Machine Learning Research, 12(88), 2879-2904, doi:https://doi.org/10.48550/arXiv.1101.3501. [5] Ciresan, D.C., Meier, U., Schmidhuber, J. (2012). “Multi-column deep neural networks for classifying images”. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3642-3649, doi:https://doi.org/10.1109/CVPR.2012.6248110. [6] Conn, A.R., Scheinberg, K., Vicente, L.N. (2009). “Introduction to derivative-free optimization”. Society for Industrial and Applied Mathematics (SIAM), doi:https://epubs.siam.org/doi/book/10.1137/1.9780898718768. [7] Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F. (2019). “Autosklearn: Efficient and robust automated machine learning”. In Automated Machine Learning: Springer Series on Challenges in Machine Learning (pp. 113-134). Springer, doi:https://doi.org/10.1007/978-3-030-05318-5_6. [8] Hong, H. (2024). “Landslide susceptibility assessment using locally weighted learning integrated with machine learning algorithms”. Expert Systems with Applications, 237(Part C), doi:https://doi.org/10.1016/j.eswa.2023.124678. [9] Hutter, F., Hoos, H.H., Leyton-Brown, K. (2011). “Sequential model-based optimization for general algorithm configuration”. In Learning and Intelligent Optimization (LION 2011), 6683, 507-523, doi:https://doi.org/10.1007/978-3-642-25566-3_40. [10] Ilemobayo, J.A., Durodola, O., Alade, O., Awotunde, O.J., Olanrewaju, A.T., Falana, O., Ogungbire, A., Osinuga, A., Ogunbiyi, D., Ifeanyi, A., Odezuligbo, I.E., Edu, O.E. (2024). “Hyperparameter tuning in machine learning: A comprehensive review”. Journal of Engineering Research and Reports, 26(6), 388-395, doi:https://doi.org/10.9734/jerr/2024/v26161188. [11] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A. (2018). ”Hyperband: A novel bandit-based approach to hyperparameter optimization”. Journal of Machine Learning Research, 18(185), 1-52, doi:https://doi.org/10.48550/arXiv.1603.06560. [13] Maclaurin, D., Duvenaud, D., Adams, R.P. (2015). “Gradient-based hyperparameter optimization through reversible learning”. Proceedings of the 32nd International Conference on Machine Learning (ICML), 37, 2113-2122, http://proceedings.mlr.press/v37/maclaurin15.html [14] Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M. (2017). “Salp swarm algorithm: A bio-inspired optimizer for engineering design problems”. Advances in Engineering Software, 114, 163-191, doi:https://doi.org/10.1016/j.advengsoft.2017.07.002. [15] Roohi, M., Mirzajani, S., Haghighi, A.R., Basse-O’Connor, A. (2024). ”Robust stabilization of fractional-order hybrid optical system using a single-input TS-fuzzy sliding mode control strategy with input nonlinearities”. AIMS Mathematics, 9(9), 25879-25907, doi:https://doi.org/10.3934/math.20241264. [16] Tiep, N.H., Jeong, H.-Y., Kim, K.-D., Xuan Mung, N., Dao, N.-N., Tran, H.-N., Hoang, V.-K., Ngoc Anh, N., Vu, M.T. (2024). “A new hyperparameter tuning framework for regression tasks in deep neural network: Combined-sampling algorithm to search the optimized hyperparameters”. Mathematics, 12(24), 3892, doi:https://doi.org/10.3390/math12243892. [17] Wahba, G. (1990). “Spline models for observational data”. Society for Industrial and Applied Mathematics, doi:https://doi.org/10.1137/1.9781611970128. [18] Yin, L., Liu, J., Fang, Y., Gao, M., Li, M., Zhou, F. (2023). “Two-stage hybrid genetic algorithm for robot cloud service selection”. Journal of Cloud Computing, 12, 95, doi:https://doi.org/10.1186/s13677-023-00458-y. [19] Zhou, J., Wang, P. (2023). “Retraction note: Image simulation of urban landscape in coastal areas based on geographic information system and machine learning”. Neural Computing and Applications, 35, 3577, doi:https://doi.org/10.1007/s00521-022-08145-w.
| ||
آمار تعداد مشاهده مقاله: 56 تعداد دریافت فایل اصل مقاله: 46 |