
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,751 |
تعداد دریافت فایل اصل مقاله | 13,905,608 |
Optimal Control of the Van der Pol Oscillator Problem by Using Orthogonal Polynomial-Based Optimization | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 شهریور 1404 اصل مقاله (609.93 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.73586.1286 | ||
نویسنده | ||
Reza Dehghan* | ||
Department of Mathematics, MaS.C., Islamic Azad University, Masjed Soleiman, Iran. | ||
چکیده | ||
The orthogonal polynomials approximation method is widely regarded as a highly effective and versatile technique for solving optimal control problems in nonlinear systems. This powerful approach has found extensive applications in both theoretical research and practical engineering, demonstrating its capability to address complex dynamical behaviors. In this paper, we thoroughly investigate the optimal control problem of the Van der Pol oscillator, a classic nonlinear system with broad scientific and engineering relevance. The proposed solution follows two distinct and systematic steps. First, the state and control functions are approximated by linear combinations of shifted Chelyshkov polynomials, whose coefficients are treated as unknown parameters to be determined. Second, the resulting transformed problem is formulated as a nonlinear optimization problem and efficiently solved using advanced numerical optimization tools implemented in \textsc{Matlab}. To demonstrate the accuracy and robustness of the proposed approach, we present and analyze numerical results across several representative scenarios. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Nonlinear optimization؛ Numerical approximation؛ Nonlinear control system؛ Chelyshkov polynomials | ||
مراجع | ||
[1] Ardabili, J.S., Talaei, Y. (2018). “Chelyshkov collocation method for solving the two-dimensional Fredholm–Volterra integral equations”, International Journal of Applied and Computational Mathematics, 4(25), 1-13,doi:https://doi.org/10.1007/s40819-017-0433-2. [2] Bellman, R. (1957). “Dynamic programming”, Series: Princeton Landmarks in Mathematics and Physics, NJ: Princeton University Press. [3] Bowen, Z., Honglei, Xu., Kok, L.T. (2023). “A numerical algorithm for constrained optimal control problems”, Journal of Industrial and Management Optimization, 19(12), 8602-8616, doi:https://www.aimsciences.org/article/doi/10.3934/jimo. 2023053. [4] Carlos, E., Solorzano, E., José, A., Avelar, B., Rolando, M.M. (2020). “Regulation of a Van der Pol oscillator using reinforcement learning”, International Congress of Telematics and Computing, 281-296. Springer, doi:http://dx.doi.org/10.1007/978-3-030-62554-2_21. [5] Chagas, T.P., Toledo, B.A., Rempel, E.L., Chian, A.C.L., Valdivia, J.A. (2012). “Optimal feedback control of the forced Van der Pol system”, Chaos, Solitons & Fractals, 45(9-10), 1147-1156, doi: https://doi.org/10.1016/j.chaos.2012.06.004. [6] Chelyshkov, V.S. (2006). “Alternative orthogonal polynomials and quadratures”, Electronic Transactions on Numerical Analysis, 25(7), 17-26. [7] Id Ouaziz, S., El Khomssi, M. (2024). “Mathematical approaches to controlling COVID-19: Optimal control and financial benefits”, Mathematical Modelling and Numerical Simulation with Applications, 4(1), 1-36, doi:https://doi.org/10.53391/mmnsa.1373093. [8] Jajarmi, A., Ebrahimzadeh, A., Khanduzi, R. (2024). “Coronavirus metamorphosis optimization algorithm and collocation method for optimal control problem in COVID-19 vaccination model”, Optimal Control Applications and Methods, 46(1), 292-306, doi:http://dx.doi.org/10.1002/oca.3215. [9] Mustapha, U.T., Maigoro, Y.A., Yusuf, A., Qureshi, S. (2024). “Mathematical modeling for the transmission dynamics of cholera with an optimal control strategy”, Bulletin of Biomathematics, 2(1), 1-20, doi:http://dx.doi.org/10.59292/bulletinbiomath.2024001. [10] Nayfeh, A.H., Mook, D.T. (1979). “Nonlinear oscillations”, John Wiley & Sons, New York. [11] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F. (1962). “The Mathematical Theory of Optimal Processes”, Wiley Interscience, New York. [12] Sirisena, H.R. (1973). “Computation of optimal controls using a piecewise polynomial parameterization”, IEEE Transactions on Automatic Control, 18(4), 409-411, doi:https://doi.org/10.1109/TAC.1973.1100329. [13] Sirisena, H., Chou, F. (1976). “An efficient algorithm for solving optimal control problems with linear terminal constraints”, IEEE Transactions on Automatic Control, 21, 275-277, doi:https://doi.org/10.1109/TAC.1976.1101176. [14] Sirisena, H., Tan, K. (1974). “Computation of constrained optimal controls using parameterization techniques”, IEEE Transactions on Automatic Control, 19(4), 431-433, doi:https://doi.org/10.1109/TAC.1974.1100614. [15] Van Dooren, R. (1987). “Numerical study of the controlled Van der Pol oscillator in Chebyshev series”, Journal of Applied Mathematics and Physics, 38(6), 934-939, doi:https://doi.org/10.1007/BF00945828. [16] Vlassenbroeck, J., Van Dooren, R. (1988). “A Chebyshev technique for solving nonlinear optimal control problems”, IEEE Transactions on Automatic Control, 33(4), 333-340, doi:https://doi.org/10.1109/9.192187. [17] Zheng, J., Xuyang, L. (2018). “Adaptive dynamic programming for optimal control of Van der Pol oscillator”, Chinese Control and Decision Conference, Shenyang, China, 1537-1542, doi:https://doi.org/10.1109/CCDC.2018.8407371. | ||
آمار تعداد مشاهده مقاله: 42 تعداد دریافت فایل اصل مقاله: 31 |