
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,772 |
تعداد دریافت فایل اصل مقاله | 13,905,645 |
A New Energy-Efficient Clustering in Wireless Sensor Networks Using an Adaptive Fuzzy Neural Network Approach | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 17 شهریور 1404 اصل مقاله (1.01 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.74415.1303 | ||
نویسندگان | ||
Ahmad Jalili* 1؛ Fatemeh Babakordi2 | ||
1Department of Computer Engineering, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous, Gonbad Kavous, Iran. | ||
2Department of Mathematics and Statistics, Gonbad Kavous University, Gonbad Kavous, Iran. | ||
چکیده | ||
Energy constraint is the most critical challenge in Wireless Sensor Networks (WSNs), particularly in dynamic environments with mobile nodes. This paper proposes an intelligent clustering protocol based on Fuzzy Neural Networks (FNN) that adaptively optimizes energy consumption by dynamically selecting cluster heads and determining optimal cluster configurations. The FNN integrates fuzzy logic's uncertainty handling with neural networks' learning capabilities, using key parameters including residual energy, node distance, neighbor density, and signal-to-noise ratio. Unlike static clustering approaches such as LEACH and HEED, our method continuously adapts to changing network conditions through real-time parameter evaluation. Extensive MATLAB simulations with 100 nodes demonstrate significant performance improvements: the proposed FNN extends network lifetime by 35% compared to LEACH, 28% compared to HEED, and 15% compared to ANN-based ELDC. The First Node Dies (FND) is delayed by 45%, 38%, and 22% respectively, while achieving 25% lower energy consumption. Results confirm the FNN approach's superior energy efficiency and network stability, making it highly suitable for dynamic WSN applications. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Wireless sensor networks؛ Energy efficiency؛ Clustering؛ Fuzzy neural networks؛ Intelligent systems | ||
مراجع | ||
[1] Akram, M., Cho, T.H. (2016). “Energy efficient fuzzy adaptive selection of verification nodes in wireless sensor networks”. Ad Hoc Networks, 47, 16-25, doi:https://doi.org/10.1016/j.adhoc.2016.04.010. [2] Babakordi, F. (2023). “An efficient method for solving the fuzzy AH1N1/09 influenza model using the fuzzy Atangana-Baleanu-Caputo fractional derivative”, Fuzzy Optimization and Modeling Journal, 4(2), 27-38, doi:https://doi.org/10.30495/fomj.2023.1988760.1096. [3] Babakordi, F. (2024). “Arithmetic operations on generalized trapezoidal hesitant fuzzy numbers and their application to solving generalized trapezoidal hesitant fully fuzzy equation”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 32(1), 85-108, doi:https://doi.org/10.1142/S0218488524500041. [4] Babakordi, F., Allahviranloo, T., Shahriari, M.R., Catak, M. (2024). “Fuzzy Laplace transform method for a fractional fuzzy economic model based on market equilibrium”, Information Sciences, 665, 120308, doi:https://doi.org/10.1016/j.ins.2024.120308. [5] Chamam, A., Pierre, S. (2010). “A distributed energy-efficient clustering protocol for wireless sensor networks”, Computers & Electrical Engineering, 36(2), 303-312, doi:https://doi.org/10.1016/j.compeleceng.2009.03.008. [6] Chang, J.Y., Ju, P.H. (2012). “An efficient cluster-based power saving scheme for wireless sensor networks”, EURASIP Journal on Wireless Communications and Networking, 2012, 1-10, doi:https://doi.org/10.1186/1687-1499-2012-172. [7] Deepa, K., Zaheeruddin, Vashist, S. (2021). “Density-based fuzzy C-means clustering to prolong network lifetime in smart grids”, Wireless Personal Communications, 119(3), 2817-2836, doi:https://doi.org/10.1007/s11277-021-08371-w. [8] García, M., Sendra, S., Lloret, J., Canovas, A. (2013). “Saving energy and improving communications using cooperative group-based wireless sensor networks”, Telecommunication Systems, 52, 2489-2502, doi:https://doi.org/10.1007/s11235-011-9568-3. [9] Gou, H., Yoo, Y. (2010). “An energy balancing LEACH algorithm for wireless sensor networks”, 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, (pp. 822-827), doi:https://doi.org/10.1109/ITNG.2010.12. [10] Grover, J., Sharma, M. (2014). “Optimized GAF in wireless sensor network”, Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization, Noida, India, (pp. 1-6), doi:https://doi.org/10.1109/ICRITO.2014.7014686. [11] Guo, W., Zhang, W., Lu, G. (2010). “PEGASIS protocol in wireless sensor network based on an improved ant colony algorithm”, 2010 Second International Workshop on Education Technology and Computer Science, Wuhan, China, (pp. 64-67), doi:https://doi.org/10.1109/ETCS.2010.285. [12] Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H. (2000). “Energy-efficient communication protocol for wireless microsensor networks”, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, (pp. 10 pp. vol.2), doi:https://doi.org/10.1109/HICSS.2000.926982. [13] Ibrahim, M.E., Ahmed, A.E. (2022). “Energyaware intelligent hybrid routing protocol for wireless sensor networks”, Concurrency and Computation: Practice and Experience, 34(3), e6601, doi:https://doi.org/10.1002/cpe.6601. [14] Jalili, A. (2024). “A hybrid fuzzy-genetic algorithm for energy-efficient routing in wireless sensor networks”, Fuzzy Optimization and Modeling Journal, 5(4), doi:https://doi.org/10.71808/fomj.2024.1194011. [15] Jalili, A., Gheisari, M., Alzubi, J.A., Fernández-Campusano, C., Kamalov, F., Moussa, S. (2024). “A novel model for efficient cluster head selection in mobile WSNs using residual energy and neural networks”, Measurement: Sensors, 33, 101144, doi:https://doi.org/10.1016/j.measen.2024.101144. [16] Jalili, A., Alzubi, J.A., Rezaei, R., Webber, J.L., Fernández-Campusano, C., Gheisari, M., Mehbodniya, A. (2024). “Markov chain-based analysis and fault tolerance technique for enhancing chain-based routing in WSNs”, Concurrency and Computation: Practice and Experience, 36(12), e8032, doi:https://doi.org/10.1002/cpe.8032. [17] Jung, S.M., Han, Y.J., Chung, T.M. (2007). “The concentric clustering scheme for efficient energy consumption in the PEGASIS”, Proceedings of the 9th International Conference on Advanced Communication Technology, Gangwon, Korea (South), 12-17, 260-265, doi:https://doi.org/10.1109/ICACT.2007.358351. [18] Farooq, M.O., Dogar, A.B., Shah, G.A. (2010). “MR-LEACH: multi-hop routing with low energy adaptive clustering hierarchy”, 2010 Fourth International Conference on Sensor Technologies and Applications, Venice, Italy, 262-268, doi:https://doi.org/10.1109/SENSORCOMM.2010.48. [19] Fouladlou, M., Khademzadeh, A. (2017). “An energy efficient clustering algorithm for wireless sensor devices in internet of things”, 2017 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, (pp. 39-44), doi:https://doi.org/10.1109/RIOS.2017.7956441. [20] Khabiri, M., Ghaffari, A. (2018). “Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm”, Wireless Personal Communications, 98(3), 2473-2495, doi:https://doi.org/10.1007/s11277-017-4983-8. [21] Klaoudatou, E., Konstantinou, E., Kambourakis, G., Gritzalis, S. (2011). “A survey on cluster-based group key agreement protocols for WSNs”, IEEE Communications Surveys & Tutorials, 13(3), 429-442, doi:https://doi.org/10.1109/SURV.2011.061710.00109. [22] Lee, J.S., Kao, T.Y. (2016). “An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks”, IEEE Internet of Things Journal, 3(6), 951-958, doi:http://dx.doi.org/10.1109/JIOT.2016.2530682. [23] Ma, J., Wang, S., Meng, C., Ge, Y., Du, J. (2018). “Hybrid energy-efficient APTEEN protocol based on ant colony algorithm in wireless sensor network”, EURASIP Journal on Wireless Communications and Networking, 2018(1), 102, doi:https://doi.org/10.1186/s13638-018-1106-5. [24] Mehmood, A., Lloret, J., Sendra, S. (2016). “A secure and low-energy zone-based wireless sensor networks routing protocol for pollution monitoring”, Wireless Communications and Mobile Computing, 16(17), 2869-2883, doi:https://doi.org/10.1002/wcm.2734. [25] Mehmood, A., Khan, S., Shams, B., Lloret, J. (2015). “Energy-efficient multi-level and distance-aware clustering mechanism for WSNs”, International Journal of Communication Systems, 28(5), 972-989, doi:https://doi.org/10.1002/dac.2720. [26] Mehmood, A., Lv, Z., Lloret, J., Umar, M.M. (2017). “ELDC: An artificial neural network-based energy-efficient and robust routing scheme for pollution monitoring in WSNs”, IEEE Transactions on Emerging Topics in Computing, 8(1), 106-114, doi:http://dx.doi.org/10.1109/TETC.2017.2671847. [27] Mosavvar, I., Ghaffari, A. (2019). “Data aggregation in wireless sensor networks using firefly algorithm”, Wireless Personal Communications, 104(1), 307-324, doi:https://doi.org/10.1007/s11277-018-6021-x. [28] Sefati, S., Abdi, M., Ghaffari, A. (2021). “Cluster-based data transmission scheme in wireless sensor networks using black hole and ant colony algorithms”, International Journal of Communication Systems, 34(9), e4768, doi:https://doi.org/10.1002/dac.4768. [29] Younis, O., Fahmy, S. (2004). “HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks”, IEEE Transactions on Mobile Computing, 3(4), 366-379, doi:https://doi.org/10.1109/TMC.2004.41. [30] Zeng, K., Ren, K., Lou, W., Moran, P.J. (2006). “Energy-aware geographic routing in lossy wireless sensor networks with environmental energy supply”, Proceedings of the 3rd International [31] Zhixiang, D., Bensheng, Q. (2008). “Three-layered routing protocol for WSN based on LEACH algorithm”, 2007 IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN07), Shanghai, 72-75, doi:http://dx.doi.org/10.1049/cp:20070086. | ||
آمار تعداد مشاهده مقاله: 39 تعداد دریافت فایل اصل مقاله: 57 |