
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,751 |
تعداد دریافت فایل اصل مقاله | 13,905,610 |
Event-Triggered Fault Detection and Control in Nonlinear Affine Multi-Agent Systems with Affine Parameter Variations | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 22 شهریور 1404 اصل مقاله (714.16 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.75259.1324 | ||
نویسندگان | ||
Mohammad Zangouei1؛ Naser Pariz* 1؛ Reihaneh Kardehi Moghaddam2 | ||
1Engineering Faculty, Electrical Department, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
2Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran. | ||
چکیده | ||
In this paper, we present an event-triggered fault-tolerant control framework for nonlinear affine multi-agent systems, together with a state-observer–based fault detection scheme. The proposed approach integrates an event-triggered controller that reduces communication and computation while guaranteeing closed-loop stability, with a robust fault-detection mechanism capable of identifying sensor faults, including current-sensor faults, under bus and load disturbances, and leveraging sensor redundancy to enable rapid recovery. A rigorous stability and robustness assessment based on eigenvalue analysis of the observer matrix is complemented by extensive MATLAB simulations that demonstrate resilience to parameter variations and external disturbances. Open-loop analyses under unconventional inputs reveal high sensitivity to fault types while exhibiting insensitivity to load disturbances, underscoring the detector’s discriminative capability. To mitigate startup and transient effects, a low-pass filter is implemented at the detector output, reducing transients and improving fault-detection accuracy for real-time identification of current sensor faults. The overall results show reliable fault detection, rapid recovery, and maintained performance in the presence of sensor faults and load disturbances, thereby enhancing the robustness of nonlinear affine multi-agent systems. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Nonlinear multi-agent systems؛ Event-triggered control؛ Stability analysis؛ Sensor faults؛ Low-pass filtering | ||
مراجع | ||
[1] Åström, K.J., Murray, R.M. (2008). “Feedback Systems: An introduction for scientists and engineers”. Princeton University Press. [2] Bian, T., Jiang, Z.P. (2021). “Reinforcement learning and adaptive optimal control for continuoustime nonlinear systems: A value iteration approach”. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2781-2790, doi:https://doi.org/10.1109/TNNLS.2020.3045087. [3] Chen, A.S., Herrmann, G. (2019). “Adaptive optimal control via continuous-time Q-learning for unknown nonlinear affine systems”. 2019 IEEE 58th Conference on Decision and Control, 1007-1012, doi:https://doi.org/10.1109/CDC40024.2019.9030116. [4] Farzanegan, B., Suratgar, A.A., Menhaj, M.B., Zamani, M. (2022). “Distributed optimal control for continuous-time nonaffine nonlinear interconnected systems”. International Journal of Control, 95(12), 3462-3476, doi:https://doi.org/10.1080/00207179.2021.1976420. [5] Han, X., Zhao, X., Karimi, H.R., Wang, D., Zong, G. (2021). “Adaptive optimal control for unknown constrained nonlinear systems with a novel quasi-model network”. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2867-2878, doi:https://doi.org/10.1109/TNNLS.2020.3046614. [6] Hirsch, M.W., Smale, S., Devaney, R.L. (2013). “Differential equations, dynamical systems, and an introduction to chaos”. Academic Press, doi:https://doi.org/10.1016/C2009-0-61160-0. [7] Huang, M., Hu, Z., Wang, L. (2022). “Optimal consensus control for heterogeneous nonlinear non-affine multi-agent systems with uncertain control directions”. ICIC Express Letters, 16(2), 177-185. [8] Li, K., Li, Y. (2021). “Performance-based optimal control for stochastic nonlinear systems with unknown dead-zone”. Optimal Control Applications and Methods, 43(1), 283-303, doi:http://dx.doi.org/10.1002/oca.2794. [9] Li, J., Ding, J., Chai, T., Lewis, F.L., Jagannathan, S. (2020). “Adaptive interleaved reinforcement learning: Robust stability of affine nonlinear systems with unknown uncertainty”. IEEE Transactions on Neural Networks and Learning Systems, 33(1), 270-280, doi:https://doi.org/10.1109/TNNLS.2020.3027653. [10] Li, Y., Fan, Y., Li, K., Liu, W., Tong, S. (2021). “Adaptive optimized backstepping control-based RL algorithm for stochastic nonlinear systems with state constraints and its application”. IEEE Transactions on Cybernetics, 52(10), 10542-10555, doi:https://doi.org/10.1109/TCYB.2021.3069587. [11] Li, Y., Liu, Y., Tong, S. (2022). “Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints”. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 3131-3145, doi:https://doi.org/10.1109/TNNLS.2021.3051030. [12] Li, Y., Zhang, J., Liu, W., Tong, S. (2021). “Observer-based adaptive optimized control for stochastic nonlinear systems with input and state constraints”. IEEE Transactions on Neural Networks [13] Lin, H., Wei, Q., Liu, D. (2015). “Online identifier–actor–critic algorithm for optimal control of nonlinear systems”. 2015 Sixth International Conference on Intelligent Control and Information Processing, Wuhan, China, 399-405, doi:https://doi.org/10.1109/ICICIP.2015.7388204. [14] Liu, Y.J., Li, S., Tong, S., Chen, C.P. (2018). Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Transactions on Neural Networks and Learning Systems, 30(1), 295-305, doi:http://dx.doi.org/10.1109/TNNLS.2018.2844165. [15] Luo, B., Liu, D., Huang, T., Yang, X., Ma, H. (2017). “Multi-step heuristic dynamic programming for optimal control of nonlinear discrete-time systems”. Information Sciences, 411, 66-83, doi:https://doi.org/10.1016/j.ins.2017.05.005. [16] Kim, J.W., Park, B.J., Yoo, H., Oh, T.H., Lee, J.H., Lee, J.M. (2020). “A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system”. Journal of Process Control, 87, 166-178, doi:https://doi.org/10.1016/j.jprocont.2020.02.003. [17] Ma, X., Tan, Y., Mei, H. (2023). “Predefined-time consensus of nonlinear multi-agent input delay/dynamic event-triggered under switching topology”. IEEE Access, 11, 29883-29895, doi:https://doi.org/10.1109/access.2023. 3258547.
[19] Mu, C., Wang, D. (2017). “Neural-network-based adaptive guaranteed cost control of nonlinear dynamical systems with matched uncertainties”. Neurocomputing, 245, 46-54, doi:https://doi.org/10.1016/j.neucom.2017.03.047. [20] Oldham, K.B., Spanier, J. (1974). “The fractional calculus: Theory and applications of differentiation and integration to arbitrary order”. Elsevier Science, Volume 111. [21] Podlubny, I. (1999). “Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications”. Academic Press (Mathematics in Science and Engineering), Volume 198. [22] Scheinker, A., Scheinker, D. (2021). “Extremum seeking for optimal control problems with unknown time-varying systems and unknown objective functions”. International Journal of Adaptive Control and Signal Processing, 35(7), 1143-1161, doi:https://doi.org/10.1002/acs.3097. [23] Song, R., Lewis, F.L. (2020). “Robust optimal control for a class of nonlinear systems with unknown disturbances based on disturbance observer and policy iteration”. Neurocomputing, 390, 185-195, doi:https://doi.org/10.1016/ j.neucom.2020.01.082. [24] Sun, J., Liu, C. (2018). “Distributed fuzzy adaptive backstepping optimal control for nonlinear multimissile guidance systems with input saturation”. IEEE Transactions on Fuzzy Systems, 27(3), 447-461, doi:http://dx.doi.org/10.1109/TFUZZ.2018.2859904. [25] Sui, S., Tong, S., Chen, C.P., Sun, K. (2019). “Fuzzy adaptive optimal control for nonlinear switched systems with actuator hysteresis”. International Journal of Adaptive Control and Signal Processing, 33(4), 609-625, doi:https://doi.org/10.1002/acs.2975. [26] Sui, S., Tong, S., Sun, K. (2018). “Adaptive dynamic programming based fuzzy control for triangular structure nonlinear uncertain systems with unknown time delay”. Optimal Control Applications and Methods, 39(2), 819-834, doi:https://doi.org/10.1002/oca.2379. [27] Sun, K., Sui, S., Tong, S. (2017). “Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems”. IEEE Transactions on Cybernetics, 48(4), 1326-1339, doi:https://doi.org/10.1109/TCYB.2017.2692384.
[29] Tarasov, V.E. (2013). “Fractional calculus on fractal domains”. Physics Letters A, 377(4-6), 321-324, doi:https://doi.org/10.1016/j.physleta.2012.11.046. [30] Tavazoei, M.S. (2020). “Fractional order chaotic systems: History, achievements, applications, and future challenges”. The European Physical Journal Special Topics, 229, 887-904, doi:https://doi.org/10.1140/epjst/e2020-900238-8. [31] Zhang, J., Zhang, H., Feng, T. (2017). “Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic”. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3339-3348, doi:http://dx.doi.org/10.1109/TNNLS.2017.2728622. | ||
آمار تعداد مشاهده مقاله: 34 تعداد دریافت فایل اصل مقاله: 40 |