
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,751 |
تعداد دریافت فایل اصل مقاله | 13,905,611 |
A Computer Algebra Approach to Linear ODE Systems with Parametric Coefficients | ||
Control and Optimization in Applied Mathematics | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 31 شهریور 1404 اصل مقاله (521.23 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.74498.1307 | ||
نویسنده | ||
Mahdi Dehghani Darmian* | ||
Department of Basic Sciences, Technical and Vocational University (TVU), Tehran, Iran. | ||
چکیده | ||
This paper analyzes systems of linear first-order ordinary differential equations (ODEs) with parametric coefficients, a class of problems that arises in control theory, optimization, and applied mathematics. We introduce the notion of a comprehensive solution system for such parametric ODEs, constructed using Gröbner systems from computer algebra. Our approach partitions the parameter space into finitely many cells and associates an explicit solution with each cell. Furthermore, we present an algorithm that computes a comprehensive solution system for any given parametric system. To address the computational challenges inherent in Gröbner systems, we adopt the GES algorithm, a parametric variant of Gaussian elimination, which eliminates the need for Gröbner bases. This method builds upon the LDS algorithm proposed in 2017. Both algorithms have been implemented in Maple, and we illustrate the structural framework of the main algorithm with a straightforward example. The results highlight the practicality and effectiveness of the proposed methods for solving parametric linear first-order ODE systems. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Parametric linear ODE systems؛ Gröbner system؛ Gaussian elimination system (GES) algorithm؛ Comprehensive solution system؛ Parameter space؛ Improved-CSS algorithm | ||
مراجع | ||
[1] Åström, K.J., Murray, R.M. (2008). “Feedback systems: An introduction for scientists and engineers”. Princeton University Press, doi:https://doi.org/10.1515/9781400828739. [2] Cox, D., Little, J.B., O’Shea, D.B. (2007). “Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra”. 3rd ed. New York, NY: Springer, doi:http://dx.doi.org/10.1007/978-3-319-16721-3. [3] Dehghani Darmian, M. (2024). “Improvement of an incremental signature-based comprehensive Gröbner system algorithm. Mathematics in Computer Science, 18(12), doi:http://dx.doi.org/10.1007/s11786-024-00587-w. [4] Dehghani Darmian, M., Hashemi, A. (2024). “A Parametric F4 Algorithm”. Iranian Journal of Mathematical Sciences and Informatics, 19(1), 117-133, doi:http://dx.doi.org/10.61186/ijmsi.19.1.117. [5] Dehghani Darmian, M. (2024). “Efficient algorithm for computing inverse of parametric matrices.” Scientific Annals of Computer Science, 34(1), 1-22, doi:http://dx.doi.org/10.47743/SACS.2024.1.1. [6] Dehghani Darmian, M., Hashemi, A. (2017). “Parametric FGLM algorithm.” Journal of Symbolic Computation, 82, 38-56, doi:https://doi.org/10.1016/j.jsc.2016.12.006. [7] Dehghani Darmian, M., Hashemi, A., Montes, A. (2011). Erratum to ”A new algorithm for discussing Gröbner bases with parameters” [J. Symbolic Comput. 33 (1-2) (2002) 183-208]. Journal of Symbolic Computation, 46(10), 1187-1188, doi:https://doi.org/10.1016/j.jsc.2011.05.002. [8] Hashemi, A., Dehghani Darmian, M., Barkhordar, M. (2017). “Gröbner systems conversion.” Mathematics in Computer Science, 11(1), 61-77, doi:https://doi.org/10.1007/s11786-017-0295-3. [9] Hashemi, A., Dehghani Darmian, M., Barkhordar, M. (2018). “Universal Gröbner basis for parametric polynomial ideals.” Mathematical software - ICMS 2018. 6th International Conference, South Bend, IN, USA, 2018. Proceedings, pages 191-199. Cham: Springer, doi:http://dx.doi.org/10.1007/978-3-319-96418-8_23. [10] Hashemi, A., M.-Alizadeh, B., Dehghani Darmian, M. (2013). “Minimal polynomial systems for parametric matrices.” Linear and Multilinear Algebra, 61(2), 265-272, doi:https://doi.org/10.1080/03081087.2012.670235. [11] Kapur, D., Sun, Y., Wang, D. (2011). “Computing comprehensive Gröbner systems and comprehensive Gröbner bases simultaneously.” ISSAC ’11: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, 193-200, doi:http://dx.doi.org/10.1145/1993886.1993918. [12] Kapur, D., Sun, Y., Wang, D. (2010). “A new algorithm for computing comprehensive Gröbner systems.” Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, pages 29-36. New York, NY: Association for Computing Machinery (ACM), doi:https://doi.org/10.1145/1837934.1837946. [13] Khalil, H.K. (2002). “Nonlinear systems”. 3rd Edition, Prentice Hall, Upper Saddle River. [14] Logan, J.D. (2015). “A first course in differential equations.” Undergraduate Texts Mathematics, Cham: Springer, 3rd edition, doi:https://doi.org/10.1007/978-3-319-17852-3. [15] Manubens, M., Montes, A. (2009). “Minimal canonical comprehensive Gröbner systems.” Journal of Symbolic Computation, 44(5), 463-478, doi:https://doi.org/10.1016/j.jsc.2007.07.022. [16] Manubens, M., Montes, A. (2006). “Improving the DisPGB algorithm using the discriminant ideal.” Journal of Symbolic Computation, 41(11), 1245-1263, doi:https://doi.org/10.1016/j.jsc.2005.09.013. [17] Montes, A. (2002). “A new algorithm for discussing Gröbner bases with parameters.” Journal of Symbolic Computation, 33(2), 183-208, doi:https://doi.org/10.1006/jsco.2001.0504. [18] Montes, A., Castro, J. (1995). “Solving the load flow problem using the Gröbner basis.” ACM SIGSAM Bulletin, 29(1), 1-13, doi:https://doi.org/10.1145/216685.216686. [19] Ogata, K. (2010). “Modern control engineering.” Prentice-Hall Electrical Engineering Series. Instrumentation and Controls Series. [20] Rawlings, J.B., Mayne, D.Q., Diehl, M. (2017). “Model predictive control: Theory, computation, and design.” Nob Hill Publishing. [21] Ritt, J.F. (1932). “Differential equations from the algebraic standpoint.Nature, 131, page 456, doi: https://doi.org/10.1038/131456a0. [22] Ritt, J.F. (1950). “Differential algebra, Colloquium Publications, American Mathematical Society. Volume 33, doi:https://doi.org/10.1090/coll/033. [23] Skogestad, S., Postlethwaite, I. (2005). “Multivariable feedback control: Analysis and design.” Wiley-Interscience. [24] Suzuki, A., Sato, Y. (2006). “A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases.” Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ISSAC ’06, Genova, Italy, pages 326-331. New York, NY: ACM Press, doi:http://dx.doi.org/10.1145/1145768.1145821. [25] Weispfenning, V. (1992). “Comprehensive Gröbner bases.” Journal of Symbolic Computation, 14(1), 1-29, doi:https://doi.org/10.1016/0747-7171(92)90023-W. [26] Wu, W-T. (1978).“On the decision problem and the mechanization of theorem-proving in elementary geometry.” Scientia Sinica, 21(2) , 117-138, doi:https://doi.org/10.1142/9789812791085_0008. [27] Wu, W.T. (1986). “On zeros of algebraic equations - An application of Ritt principle.” Kexue Tongbao, Science Bulletin, 31, 225-229, doi:https://doi.org/10.1142/9789812791085_0013. [28] Zhou, K., Doyle, J.C., Glover, K. (1996). “Robust and optimal control”. Feher/Prentice Hall Digital and Prentice Hall. | ||
آمار تعداد مشاهده مقاله: 29 تعداد دریافت فایل اصل مقاله: 29 |