| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,847 |
| تعداد مشاهده مقاله | 22,201,431 |
| تعداد دریافت فایل اصل مقاله | 14,928,228 |
ارزیابی و تحلیل آسیبپذیری لرزهای شهر ایلام با استفاده از مدل دیمتل فازی و GIS | ||
| برنامه ریزی توسعه کالبدی | ||
| دوره 12، شماره 1، خرداد 1404، صفحه 105-118 اصل مقاله (2.48 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.30473/psp.2025.73523.2759 | ||
| نویسندگان | ||
| حجت شیخی* 1؛ مینا عبدلی2 | ||
| 1دانشیار گروه معماری و شهرسازی، دانشگاه ایلام، ایلام، ایران | ||
| 2دانشجوی کارشناسیارشد جغرافیا و برنامهریزی شهری، دانشگاه ایلام، ایلام، ایران | ||
| چکیده | ||
| در سالهای اخیر، دانش برنامهریزی و طراحی شهری، متناسب با گستره خود، به دنبال شناسایی روشهایی برای کاهش خسارات ناشی از زلزله در شهرها به عنوان زیستگاه اصلی انسان بوده است. لذا این مطالعه با هدف ارزیابی آسیبپذیری لرزهای شهر ایلام انجام شده است. این پژوهش از نظر هدف کاربردی بر اساس رویکرد توصیفی- تحلیلی انجام شده است. دادههای اولیه اسناد و نقشههای موجود از سازمانهای مرتبط جمعآوری شد. برای تجزیه و تحلیل دادهها از مدل دیمتل- فازی و سیستم اطلاعات جغرافیایی استفاده شده است. برای تعیین آسیبپذیری لرزهای شهر ایلام، شاخصهایی مانند تراکم جمعیت، کاربری اراضی، تراکم ساختمان، شبکه معابر، فاصله از فضاهای سبز، فاصله از گسل، قدمت ابنیه، تعداد طبقات، کیفیت ابنیه، مصالح ساختمان، زمین شناسی و شیب به کار گرفته شدند. بر اساس نتایج، 04/19 درصد کل شهر ایلام در مناطق با آسیبپذیری زیاد و خیلی زیاد قرار داشت که بیشتر در مناطق مرکزی شهر واقع شده و به دلیل نوع بافت و مصالح به کار رفته در ساخت آن از ایمنی کمتری برخوردار هستند. | ||
| کلیدواژهها | ||
| آسیبپذیری؛ ایلام؛ دیمتل- فازی؛ GIS | ||
| عنوان مقاله [English] | ||
| Assessment and Analysis of Seismic Vulnerability in Ilam City Using the Fuzzy DEMATEL Model and GIS | ||
| نویسندگان [English] | ||
| hojjat sheikhi1؛ Mina Abdoli2 | ||
| 1Associate Professor, Department of Architecture and Urban Planning, Ilam University, Ilam, Iran | ||
| 2M.S. Student in Geography and Urban Planning, Ilam University, Ilam, Iran | ||
| چکیده [English] | ||
| In recent years, urban planning and design knowledge has increasingly sought methods to reduce earthquake-induced damages in cities, the primary habitats of human life. Accordingly, this study aims to assess the seismic vulnerability of Ilam city. The research is applied in purpose and descriptive–analytical in nature. Primary data were collected from existing documents and maps obtained from relevant organizations. For data analysis, the Fuzzy DEMATEL model and Geographic Information System (GIS) were employed. To determine the seismic vulnerability of Ilam city, a set of indicators was considered, including population density, land use, building density, street network, distance from green spaces, distance from faults, building age, number of floors, building quality, construction materials, geology, and slope. The results revealed that 19.04% of the total area of Ilam city falls within high and very high vulnerability zones. These areas are mostly concentrated in the central parts of the city, where the urban fabric and construction materials used make them less resistant to seismic hazards. | ||
| کلیدواژهها [English] | ||
| Vulnerability, Ilam, Fuzzy DEMATEL, GIS | ||
| مراجع | ||
|
Alhawasli, H; & Daneshjoo, KH. (2018). Improving Residential Buildings Performance against the Explosion Using Passive Defense RequirementsCase Study: Designing a Residential Building in Damascus. Trends in Civil Engineering and its Architecture, 2(3): 1-8. https://doi.org/10.32474/TCEIA.2018.02.000138 Arkhi, S, Kelvi, S. (2019), Comparison of pixel-based and object-oriented classification methods in preparing land use maps using satellite images (Case study: Ilam city), Geography and Urban-Regional Planning, 9 (32): 1-16. (In Persian). Ansari Lari, A, Najafi, E, Nourbakhsh, S F. (2011), Geomorphological Capabilities and Limitations of Physical Development of Ilam City, Environmental Planning, 4 (15): 1- 16. (In Persian). Beroya-Eitner, M.A. (2016). Ecological vulnerability indicators. Ecol. Indic, 60, 329–334. https://doi.org/10.1016/j.ecolind.2015.07.001 Boad Technique Consulting Engineers (2013), Comprehensive Plan Review Studies, General Directorate of Roads and Urban Planning of Ilam Province. (In Persian). Boloorani. A.D, Shorabeh S.N, Neysani Samany. N, Mousivand. A, Kazemi. Y, Jaafarzadeh. N, Zahedi . A, Rabiei. J. (2021).Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Environ Pollut.,Jun 15; 279:116859. Doi: 10.1016/j.envpol.2021.116859. Epub 2021 Mar 10. PMID: 33744637. https://doi.org/10.1016/j.envpol.2021.116859 Cariolet, J.M., Vuillet, M.; Diab, Y.(2019). Mapping urban resilience to disasters–A review. Sustain. Cities Soc. , 51, 101746. https://doi.org/10.1016/j.scs.2019.101746 Celik, E., Akyuz, E. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers, Journal of Loss Prevention in the Process Industries, 38: 243-253. https://doi.org/10.1016/j.jlp.2015.10.006 Duy, P.N,Chapman, L, Tight, M.(2019). Resilient transport systems to reduce urban vulnerability to floods in emerging-coastal cities: A case study of Ho Chi Minh City, Vietnam. Travel Behav. Soc, 15, 28–43. https://doi.org/1016/j.tbs.2018.11.001 Estrada, F., Botzen, W.W., Tol, R.S.(2015). Economic losses from US hurricanes consistent with an influence from climate change. Nat. Geosci, 8, 880–884. https://doi.org/ 10.1038/ngeo2560 Fazel, S, Taghvaei, M. Mahmoudzadeh, A. (2019), Explaining the concept of risk and measuring the seismic risk of urban areas (Case study: Najafabad), Quarterly Journal of Human Geography Research, 51 (1): 1-21. (In Persian). https://doi.org/ 10.22059/jhgr.2017.61600 Fakhruddin, B.S., Reinen-Hamill, R., Robertson, R.(2019). Extent and evaluation of vulnerability for disaster risk reduction of urban Nuku’alofa, Tonga. Prog. Disaster Sci, 2, 100017. https://doi.org/ 10.1016/j.pdisas.2019.100017 Galbusera, L., Giannopoulos, G.(2018). On input-output economic models in disaster impact assessment. Int. J. Disaster Risk Reduct, 30, 186–198. https://doi.org/ 10.1016/j.ijdrr.2018.04.030 Goli Mokhtari, L, Shakari Badi, A. Bashkani, Zahra (2018), Assessing the vulnerability of Kashan urban area to earthquake hazard using the IHPW model, Environmental Hazards, No. 16, 105-126. (In Persian). Hakala, E., Lähde, V., Majava, A., Toivanen, T.,Vadén, T., Järvensivu, P., Eronen, J.T. (2019). Northern Warning Lights: Ambiguities of Environmental Security in Finland and Sweden. Sustainability, 11, 2228. https://doi.org/10.3390/su11082228 Hoffmann, S., Beierkuhnlein, C.(2020). Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib., 26, 1496–1509. https://doi.org/10.1111/ddi.13136 Khedmatzadeh, A. Mousavi, M. Yousefzadeh, A. (2021), “Analysis of urban vulnerability indicators with an earthquake crisis management approach (case study: Urmia city)”, Human Settlement Planning Studies, 16(1): 43-62. (In Persian). Mahmoudi, S.,Jalali, A., Ahmadi, . M , Abasi, P , Salari, N.(2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Appl. Soft Comput. J. 84, 105729. https://doi.org/10.1016/j.asoc.2019.105729 Mohammadfam, I., Mirzaei, M,. Aliabadi, A.R. Soltanian, M.(2019). Tabibzadeh and M. Mahdinia, Investigating interactions among vital variables affecting situation awareness based on Fuzzy DEMATEL method. Int. J. Ind. Ergon. 74, 102842. https://doi.org/10.1016/j.ergon.2019.102842 Majhi, S.K., Hossain, S.S., Padhi, T.(2020). MFOFLANN: Moth flame optimized functional link artificial neural network for prediction of earthquake magnitude. Evol. Syst., 11, 45–63. https://doi.org/1007/s12530-019-09293-6 Mishra, A., Ghate, R., Maharjan, A., Gurung, J., Pathak, G., Upraity, A.N. (2017).Building ex ante resilience of disaster-exposed mountain communities: Drawing insights from the Nepal earthquake recovery. Int. J. Disaster Risk Reduct., 22, 167–178. https://doi.org/10.1016/j.ijdrr.2017.03.008 Naik, S.P., Kim, Y.-S., Kim, T., Su-Ho, J.(2017). Geological and structural control on localized ground effects within the Heunghae Basin during the Pohang Earthquake, South Korea. Geosciences 2019, 9, 173. https://doi.org/10.3390/geosciences9040173 Noy, I., Vu, T.B.(2010). The economics of natural disasters in a developing country: The case of Vietnam. J. Asian Econ, 21, 345–354. https://doi.org/10.1016/j.asieco.2010.03.002 Pandit, A., Biswal, K.C. (2019). Prediction of earthquake magnitude using adaptive neuro fuzzy inference system. Earth Sci. Inform., 12, 513–524. https://doi.org/10.1007/s12145-019-00397-w Pagano, A., Pluchinotta, I., Giordano, R., Vurro, M. (2017). Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study. Sustain. Cities Soc, 28, 435–449. https://doi.org/10.1016/j.scs.2016.09.005 Parvizian, A, Maleki, S. (2022). Vulnerability of urban areas to earthquake risk based on the IHWP model (case study: areas of Region 6 of Ahvaz metropolis), Scientific Journal of Land Planning, 14 (2): 571-594. (In Persian). https://doi.org/10.22059/jtcp.2022.335903.670284 Qureshi, S., Shorabeh, S.N., Samany, N.N., Minaei, F., Homaee, M., Nickravesh, F., Firozjaei, M.K., Arsanjani, J.J.(2021). A New Integrated Approach for Municipal Landfill Siting Based on Urban Physical Growth Prediction: A Case Study Mashhad Metropolis in Iran. Remote Sens, 13, 949. https://doi.org/10.3390/rs13050949 Shah, A.A., Ye, J., Abid, M., Khan, J., Amir, S.M. (2018). Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Nat. Hazards, 93, 147–165. https://doi.org/10.1007/s11069-018-3293-0 Schilling, J., Hertig, E., Tramblay, Y., Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang, 20, 1–12. https://doi.org/10.1007/s10113-020-01597-7 Shen, S., Cheng, C., Song, C., Yang, J., Yang, S., Su, K., Yuan, L., Chen, X. (2018). Spatial distribution patterns of global natural disasters based on biclustering. Nat. Hazards 2, 92, 1809–1820. https://doi.org/10.1007/s11069-018-3279-y Singh, R., Kumar, R. (2015).Vulnerability of water availability in India due to climate change: A bottom-up probabilistic Budyko analysis. Geophys. Res. Lett, 42, 9799–9807. https://doi.org/10.1002/2015GL066363 Singh, S.J., Fischer-Kowalski, M., Haas, W. (2018). The sustainability of humanitarian aid: The Nicobar Islands as a case of ‘complex disaster’. In The Asian Tsunami and Post-Disaster Aid; Springer: Singapore, pp. 143–165. https://doi.org/10.1007/978-981-13-0182-7_8 Tavakolinia, J, Zarghami, S. Teymouri, A. Eskanderpour, M. (2019), An analysis of spatial pathology of the physical structure and social fabric of the city with a passive defense approach, case study: District Six of Tehran Metropolitan Area, Applied Research in Geographical Sciences, No. 53, 51-73. (In Persian). https://doi.org/10.29252/jgs.19.53.51 Thakkar, J.J. (2021). Decision-Making Trial and Evaluation Laboratory (DEMATEL), Multi-Criteria Decision Making, Studies in Systems, Decision and Control, Springer, Singapore. https://doi.org/10.1007/978-981-33-4745-8_9 Tziavou, O., Pytharouli, S., Souter, J. (2018). Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Eng. Geol, 232, 12–21. https://doi.org/10.1016/j.enggeo.2017.11.004 Song,T., Chen, M., Xu, Y., Wang, D., Song, X., Tang, X. (2021). Competition-guided multi-neighborhood local search algorithm for the university course timetabling problem, Appl. Soft Comput. 11, no. 3, 607–624. https://doi.org/10.1016/j.asoc.2021.107624 Varis, O., Kummu, M., Salmivaara, A. (2012). Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. Appl. Geogr, 32, 441–454. https://doi.org/10.1016/j.apgeog.2011.05.003 Wu, J., He, X., Li, Y., Shi, P., Ye, T., Li, N. (2019). How earthquake-induced direct economic losses change with earthquake magnitude, asset value, residential building structural type and physical environment: An elasticity perspective. J. Environ. Manag, 231, 321–328. https://doi.org/ 10.1016/j.jenvman.2018.10.050 Xu, Jiuping; & Lu, Yi. (2018). Towards an earthquake-resilient world: from postdisaster reconstruction to pre-disaster prevention. Environmental Hazards, 17(4): 269– 275. https://doi.org/ 10.1080/17477891.2018.1500878 Yariyan, P., Zabihi, H., Wolf, I.D., Karami, M., Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. Int. J. Disaster Risk Reduct, 50, 101705. https://doi.org/10.1016/j.ijdrr.2020.101705 Ylenia, S., Luca, S., & Maria, R.V. (2021). “Seismic response of masonry buildings in historical centres struck by the 2016 Central Italy earthquake”, Calibration of a vulnerability model for strengthened conditions, Construction and Building Materials, Vol. 299, 123911, https://doi.org/10.1016/j.conbuildmat.2021.123911. Yukio, T., Yuichi, S., Yuta, N., Yuichi. O. (2019). “An example of three dimensional ground model development for earthquake response analysis by using a simple ground modeling system”, Japanese Geotechnical Society Special Publication, Vol. 6, Issue 2, pp. 45-52. https://doi.org/10.3208/jgssp.v06.GIZ07 | ||
|
آمار تعداد مشاهده مقاله: 308 تعداد دریافت فایل اصل مقاله: 33 |
||