 
				| تعداد نشریات | 46 | 
| تعداد شمارهها | 1,226 | 
| تعداد مقالات | 10,516 | 
| تعداد مشاهده مقاله | 20,648,912 | 
| تعداد دریافت فایل اصل مقاله | 14,169,407 | 
| Designing a New Continuous Quantum Evolutionary Algorithm for Nonlinear Optimization and Efficiency Frontier Evaluation | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 مهر 1404 اصل مقاله (1014.48 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.74960.1316 | ||
| نویسندگان | ||
| Tahereh Azizpour؛ Majid Yarahmadi* | ||
| Department of Mathematics and Computer Science, Lorestan University, Lorestan, 68151-44316, Iran. | ||
| چکیده | ||
| In this paper, we introduce a new continuous quantum evolutionary optimization algorithm designed for optimizing nonlinear convex functions, non-convex functions, and efficiency evaluation problems using quantum computing principles.  Traditional quantum evolutionary algorithms have primarily been implemented for discrete and binary decision variables. The proposed method has been designed as a novel continuous quantum evolutionary optimization algorithm tailored to problems with continuous decision variables.  To assess the algorithm’s performance, several numerical experiments are conducted, and the simulated results are compared with the Grey Wolf Optimizer and Magnet Fish Optimization search algorithm. The simulation results indicate that the proposed algorithm can approximate the optimal solution more accurately than the two compared algorithms. | ||
| تازه های تحقیق | ||
| 
 | ||
| کلیدواژهها | ||
| Convex optimization؛ Non-Convex optimization؛ Evolution algorithm؛ Quantum evolution algorithm؛ Efficient frontier؛ Markowitz efficient frontier | ||
| مراجع | ||
| [1] Ardakani, J.S., Farahmand Rad, S., Kanzi, N. (2019). “Characterization of properly efficient solutions for convex multiobjective programming with nondifferentiable vanishing constraints”. Control and Optimization in Applied Mathematics, 3(2), 49-58, doi:https://doi.org/10.30473/coam.2019.42442.1094. [2] Arjmandzadeh, A., Yarahmadi, M. (2017). “Quantum genetic learning control of quantum ensembles with Hamiltonian uncertainties”. Entropy Journal, 19(8), doi:https://doi.org/10.3390/e19080376. [3] Bidlingmaier, M.E. (2023). “An evaluation algorithm for datalog with equality”. Computer Science, arXiv preprint arXiv:2302.05792, doi:https://doi.org/10.48550/arXiv.2302.05792. [4] Bunnag, D., Sun, M. (2005). “Genetic algorithm for constrained global optimization in continuous variables”. Applied Mathematics and Computation, 171(1), 604-636, doi:https://doi.org/10.1016/j.amc.2005.01.075. [5] Chan, L.K.C., Karceski, J., Lakonishok, J. (1998). “The risk and return from factors”. Journal of Financial and Quantitative Analysis, 33(2), 159-188, doi:https://doi.org/10.2307/2331306. [6] Ebrahimia, M.A., Dehnavia, H.D., Mirabib, M., Honaria, V., Sadeghian, A. (2023). “Solving NP-hard problems using a new genetic algorithm”. International Journal of Nonlinear Analysis and Applications, 14(1), 275-285, doi:10.22075/ijnaa.2022.26610.3364. [8] Eiben, A.E., Smith, J.E. (2015). “Introduction to evolutionary computing”. Springer Berlin, Heidelberg, doi:https://doi.org/10.1007/978-3-662-44874-8. [9] Eshaghnezhad, M., Effati, S., Mansoori, M. (2017). “A neuro dynamic model to solve nonlinear pseudo-monotone projection equation and its applications”. IEEE Transactions on Cybernetics, 47(10), 3050-3062, doi:https://doi.org/10.1109/TCYB.2016.2611529. [10] Eshaghnezhad, M., Effati, S., Mansoori, A. (2022). “A compact MLCP-based projection recurrent neural network model to solve shortest path problem”. Journal of Experimental & Theoretical Artificial Intelligence, 35(7), 1101-1119, doi:https://doi.org/10.1080/0952813X.2022.2067247. [11] Gao, J., He, G., Liang, L., Feng, Z. (2014). “A quantum-inspired artificial immune system for the  [12] Ghysels, E., Plazzi, A., Valkanov, R.I. (2016). “The risk-return relationship and financial crises”. January Electronic Journal, doi:http://dx.doi.org/10.2139/ssrn.2776702. [13] Guo, X., Chan, R.H., Wong, W.K., Zhu, L. (2019). “Mean-variance, mean-VaR, and mean-CVaR models for portfolio selection with background risk”. Risk Management, 21, 73-98, doi:http://dx.doi.org/10.2139/ssrn.3254849. [14] Henrion, D., Lasserre, J.B. (2004). “Solving nonconvex optimization problems”. IEEE Control Systems Magazine, 24(3), 72-83, doi:https://doi.org/10.1109/MCS.2004.1299534. [15] Hindi, H. (2004). “A tutorial on convex optimization”. Proceedings of the 2004 American Control Conference, Boston, MA, USA, pp. 3252-3265 vol.4, doi:https://doi.org/10.23919/ACC.2004.1384411. [16] Han, K.H., Kim, J.H. (2002). “Quantum-inspired evolutionary algorithm for a class of combinatorial optimization”. IEEE Transactions on Evolutionary Computation, 6(6), 580-593, doi:https://doi.org/10.1109/TEVC.2002.804320. [17] Kim, Y., Kim, J.H., Han, K.H. (2006). “Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 Knapsack problems”. IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 2006, pp. 2601-2606, doi:https://doi.org/10.1109/CEC.2006.1688633. [18] Li, Y., Jiao, L. (2008). “Quantum-inspired immune clonal algorithm”. Artificial Immune Systems, 33(2), 304-317, doi:https://doi.org/10.1109/TSMCB.2008.927271. [19] Liu, Y. (2021). “Evaluation algorithm of teaching work quality in colleges and universities based on deep denoising autoencoder network”. Mobile Information Systems, 2021, doi:https://doi.org/10.1155/2021/8161985 [20] Markowitz, H. (1952). “Portfolio selection”. Journal of Finance, 7(1), 77-91, doi:https://doi.org/10.1111/j.1540-6261.1952.tb01525.x. [21] Mohammadsalahi, K., Modarres Khiyabani, F., Azarmir Shotorbani, N. (2022). “A new optimization method based on dynamic neural networks for solving non-convex quadratic constrained optimization problems”. Control and Optimization in Applied Mathematics, 7(2), 35-52, doi:https://doi.org/10.30473/coam.2022.64268.1206. [22] Muñoz, A., Rubio, F. (2021). ”Evaluating genetic algorithms through the approximability hierarchy”. Journal of Computational Science, 53, doi:https://doi.org/10.1016/j.jocs.2021.101388. [23] Mulvey, J.M., Rosenbaum, D.P., Shetty, B. (1997). “Strategic financial risk management and operations research”. European Journal of Operational Research, 97(1), 1-16, doi:https://doi.org/10.1016/S0377-2217(96)00222-6. [24] Ray, T., Saini, P. (2007). “Engineering design optimization using a swarm with an intelligent information sharing among individuals”. Journal of Engineering Optimization, 33(6), 7350-748, doi:https://doi.org/10.1080/03052150108940941. [25] Ruefli, T.W. (1990). “Mean-variance approaches to risk-return relationships in strategy: Paradox lost”. Management Science, 36(3), doi:https://doi.org/10.1287/mnsc.36.3.368. [26] Semenov, A. (2021). “Measuring the stock’s factor beta and identifying risk factors under market inefficiency”. The Quarterly Review of Economics and Finance, 80, 635-649, doi:https://doi.org/10.1016/j.qref.2021.03.014. [27] Saridakis, K.M., Dentsoras, A.G. (2008). “Soft computing in engineering design-A review”, Applied Soft Computing, 22(2), 202-221, doi:https://doi.org/10.1016/j.asoc.2023.111098. [28] Szegö, G. (2002). “Measures of risk”. Journal of Banking & Finance, 6(7), 1253-1272, doi:https://doi.org/10.1016/j.ejor.2003.12.016. [29] Tuy, H. (1992). “On nonconvex optimization problems with separated nonconvex variables”. Journal of Global Optimization, 2, 133-144, doi:https://doi.org/10.1007/BF00122050. [30] Xiong H., Wu, Z., Fan, H., Li, G., Jiang, G. (2018). “Quantum rotation gate in quantum-inspired evolutionary algorithm: A review, analysis and comparison study”. Swarm and Evolutionary, 42, 43-57, doi:https://doi.org/10.1016/j.swevo.2018.02.020. | ||
| آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 2 | ||