 
				| تعداد نشریات | 46 | 
| تعداد شمارهها | 1,226 | 
| تعداد مقالات | 10,516 | 
| تعداد مشاهده مقاله | 20,649,023 | 
| تعداد دریافت فایل اصل مقاله | 14,169,558 | 
| Feedback Long Short-Term Memory: A Long Short-Term Memory-Based Framework for Multivariate Time Series Prediction in Chaotic Systems | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 01 آبان 1404 اصل مقاله (1.55 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.72730.1312 | ||
| نویسندگان | ||
| Saeed Mirzajani* 1؛ Majid Roohi2 | ||
| 1Department of Basic Sciences, Technical and Vocational University (TVU), Tehran, Iran | ||
| 2Department of Mathematics, Aarhus University, Denmark. | ||
| چکیده | ||
| The prediction of chaotic time series is essential for understanding highly nonlinear and sensitive systems, with the Lorenz system serving as a standard benchmark due to its intricate and non-periodic dynamics. Classical forecasting approaches often struggle to capture such irregularities,  motivating a shift toward deep learning–based strategies. In this study, we develop two hybrid models—Feedback Long Short-Term Memory (FB-LSTM) and Feedback Variational Stacked LSTM (FBVS-LSTM), specifically designed for multivariate prediction of the Lorenz system. By embedding feedback structures into LSTM networks, the proposed methods deliver enhanced short-term prediction performance without substantial computational costs. Comparative simulations indicate that our frameworks surpass traditional RNNs and baseline LSTM models,  achieving prediction accuracies up to 94%. These findings indicate that feedback-enhanced architectures offer effective and practical tools for forecasting chaotic systems, with potential applications in both scientific research and engineering practice. | ||
| تازه های تحقیق | ||
| 
 | ||
| کلیدواژهها | ||
| Deep learning؛ Lorenz system؛ Neural networks؛ Time-series forecasting؛ Global convergence؛ Multivariate sequence prediction | ||
| مراجع | ||
| [1] Alavi, S.A., Haghighi, A., Yari, A., Soltanian, F. (2022). “A numerical method for solving fractional optimal control problems using the operational matrix of Mott polynomials”. Computational Methods for Differential Equations, 10(3), 755-773, doi:https://doi.org/10.22034/cmde.2021.39419.1728. [2] Alavi, S., Haghighi, A., Yari, A., Soltanian, F. (2022). “Using Mott polynomials operational matrices to optimize multi-dimensional fractional optimal control problems”. Iranian Journal of Numerical Analysis and Optimization, 12(1), 201-227, doi:https://doi.org/10.22067/ijnao.2021.68926.1016. [3] Alikhanov, A.A., Shahbazi Asl, M., Li, D. (2024). “A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application”. Computers & Mathematics with Applications, 175, 330–344, doi:https://doi.org/10.1016/j.camwa.2024.10.016. [4] Al Nassan, W., Bonny, T., Obaideen, K., Hammal, A.A. (2022). “An LSTM model-based prediction of chaotic system: Analyzing the impact of training dataset precision on the performance”. In the 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 2022, pp. 337-342, doi:https://doi.org/10.1109/ICECTA57148.2022.9990128. [5] Shahbazi Asl, M., Javidi, M. (2019). “Numerical evaluation of order six for fractional differential equations: Stability and convergency”. Bulletin of the Belgian Mathematical Society-Simon Stevin, 26(2), 203-221, doi:https://doi.org/10.36045/bbms/1561687562. [6] Berliner, L.M. (1991). “Likelihood and Bayesian prediction of chaotic systems”. Journal of the American Statistical Association, 86(416), 938-952, doi:https://doi.org/10.2307/2290510. [7] Bingi, K., Mozhi Devan, P.A., Azmadi Hussin, F. (2021). “Reconstruction of chaotic attractor for fractional-order Tamaševičius system using recurrent neural networks”. In Australian & New Zealand Control Conference (ANZCC), IEEE, 1-6, doi:https://doi.org/10.1109/ANZCC53563.2021.9628225. [8] Cao, S., Feng, P., Kang, W., Chen, Z., Wang, B. (2025). “Optimized driver fatigue detection method using multimodal neural networks”. Scientific Reports, 15(1), 12240, doi:https://doi.org/10.1038/s41598-025-86709-1. [9] Chen, Y., Huang, H., Huang, K., Roohi, M., Tang, C. (2024). “A selective chaos-driven encryption technique for protecting medical images”. Physica Scripta, 100(1), doi:https://doi.org/10.1088/1402-4896/ad9fad. [10] Dadashi, M.R., Haghighi, A.R., Soltanian, F., Yari, A. (2020). “On the numerical solution of optimal control problems via Bell polynomials basis”. Iranian Journal of Numerical Analysis and Optimization, 10(2), 197-221, doi:https://doi.org/10.22067/ijnao.v10i2.86884. [11] Dudukcu, H.V., Taskiran, M., Taskiran, Z.G.C., Yildirim, T. (2023). “Temporal convolutional networks with RNN approach for chaotic time series prediction”. Applied Soft Computing, 133, doi:https://doi.org/10.1016/j.asoc.2022.109945. [12] Vasant Dudul, S. (2005). “Prediction of a Lorenz chaotic attractor using two-layer perceptron neural network”. Applied Soft Computing, 5(4), 333-355, doi:https://doi.org/10.1016/j.asoc.2004.07.005. [13] Ebadi, M., Haghighi, A.R., Maleki, I.M., Ebadian, A. (2021). “FBSM solution of optimal control problems using hybrid Runge-Kutta based methods”. Journal of Mathematical Extension, 15(4), doi:https://doi.org/10.30495/JME.2021.1641. [14] Ewees, A.A., Abd Elaziz, M., Alameer, Z., Ye, H., Jianhua, Zh. (2020). “Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility”. Resources Policy, 65, doi:https://doi.org/10.1016/j.resourpol.2019.101555. [15] Fini, A.T., Fattahi, A., Musavi, S. (2023). “Machine learning prediction and multiobjective optimization for cooling enhancement of a plate battery using the chaotic water-microencapsulated PCM fluid flows”. Journal of the Taiwan Institute of Chemical Engineers, 148, doi:https://doi.org/10.1016/j.jtice.2023.104680. [16] Fouladgar, N., Främling, K. (2020). “A novel LSTM for multivariate time series with massive missingness”. Sensors, 20(10), 2832,doi:https://doi.org/10.3390/s20102832. [17] García-Merino, J.C., Calvo-Jurado, C., Martínez-Pañeda, E., García-Macías, E. (2023). “Multi-element polynomial chaos Kriging-based metamodelling for Bayesian inference of non-smooth systems”. Applied Mathematical Modelling, 116, 510-531, doi:https://doi.org/10.1016/j.apm.2022.11.039. [18] Hochreiter, S., Schmidhuber, J. (1997). “Long short-term memory”. Neural Computation, 9(8), 1735-1780, doi:https://doi.org/10.1162/neco.1997.9.8.1735. [19] Jia, B., Wu, H., Guo, K. (2024). “Chaos theory meets deep learning: A new approach to time series forecasting”. Expert Systems with Applications, 255, Part B, doi:https://doi.org/10.1016/j.eswa.2024.124533. [20] Laurent, T., Von Brecht, J. (2016). “A recurrent neural network without chaos”, arXiv preprint [21] Lei, Y., Hu, J., Ding, J. (2020). “A hybrid model based on deep LSTM for predicting high-dimensional chaotic systems”. arXiv preprint arXiv:2002.00799, doi:https://doi.org/10.48550/arXiv.2002.00799. [22] Liu, S., Wang, Q., Liu, C., Sun, Y., He, L. (2023). “Natural exponential and three-dimensional chaotic system”. Advanced Science, 10(15), 2204269, doi:https://doi.org/10.1002/advs.202204269. [23] Liu, Q., Peng, H., Long, L., Wang, J., Yang, Q., Pérez Jiménez, M.J., Orellana-Martín, D. (2023). “Nonlinear spiking neural systems with autapses for predicting chaotic time series”. IEEE Transactions on Cybernetics, 54(3), 1841-1853, doi:https://doi.org/10.1109/TCYB.2023.3270873. [24] Long, L., Liu, Q., Peng, H., Wang, J., Yang, Q. (2022). “Multivariate time series forecasting method based on nonlinear spiking neural P systems and non-subsampled shearlet transform”. Neural Networks, 152, 300-310, doi:https://doi.org/10.1016/j.neunet.2022.04.030. [25] Lorenz, E.N. (2017). “Deterministic nonperiodic flow”. In: Hunt, B.R., Li, T.Y., Kennedy, J.A., Nusse, H.E. (eds) The Theory of Chaotic Attractors. Springer, New York, NY, doi:https://doi.org/10.1007/978-0-387-21830-4_2. [26] Madondo, M., Gibbons, T.E. (2018). “Learning and modeling chaos using LSTM recurrent neural networks”. In Proceedings of the Midwest Instruction and Computing Symposium, Duluth, Minnesota, 6-7. https://api.semanticscholar.org/CorpusID:212631658. [27] Mahmoudi, A. (2025). “Investigating LSTM-based time series prediction using dynamic systems measures”. Evolving Systems, 16(2), 71, doi:https://doi.org/10.1007/s12530-025-09703-y. [28] Mukherjee, S., Osuna, E., Girosi, F. (1997). “Nonlinear prediction of chaotic time series using support vector machines”. In Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, 511-520, doi:https://doi.org/10.1109/NNSP.1997.622433. [29] Özalp, E., Margazoglou, G., Magri, L. (2023). “Physics-informed long short-term memory for forecasting and reconstruction of chaos”. In Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham, doi:https://doi.org/10.1007/978-3-031-36027-5_29. [30] Pradeepkumar, D., Ravi, V. (2016). “FOREX rate prediction using chaos and quantile regression random forest”. In 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 517-522, doi:https://doi.org/10.1109/RAIT.2016.7507954. [31] Qu, J., Zhao, T., Ye, M., Li, J., Liu, C. (2020). “Flight delay prediction using deep convolutional neural network based on fusion of meteorological data”. Neural Processing Letters, 52(2), 1461-1484, doi:https://doi.org/10.1007/s11063-020-10318-4. [32] Rao, H., Zhao, Y., Chen, H.-P. (2025). “Predicting chaotic system behavior using machine learning techniques”. Nonlinear Science and Control Engineering, 1(1), doi:https://doi.org/10.36922/NSCE025290003. [33] Rojas, L., Yepes, V., García, J. (2025). “Complex dynamics and intelligent control: Advances, challenges, and applications in mining and industrial processes”. Mathematics, 13(6), 961, doi:https://www.mdpi.com/2227-7390/13/6/961. [34] Roohi, M., Mirzajani, S., Basse-O’Connor, A. (2023). “A no-chatter single-input finite-time PID sliding mode control technique for stabilization of a class of 4D chaotic fractional-order laser systems”. Mathematics,11(21), 1-22, doi:https://doi.org/10.3390/math11214463. [35] Roohi, M., Mirzajani, S., Haghighi, A.R., Basse-O’Connor, A. (2024). “Robust design of two-level non-integer SMC based on deep soft actor-critic for synchronization of chaotic fractional order memristive neural networks”. Fractal and Fractional, 8(9), 548, Available: https://www.mdpi.com/2504-3110/8/9/548. [36] Sandubete, J.E., Escot, L. (2020). “Chaotic signals inside some tick-by-tick financial time series”. Chaos, Solitons & Fractals, 137, doi:https://doi.org/10.1016/j.chaos.2020.109852. [37] Sangiorgio, M., Dercole, F. (2020). “Robustness of LSTM neural networks for multi-step forecasting of chaotic time series”. Chaos, Solitons & Fractals, 139, doi:https://doi.org/10.1016/j.chaos.2020.110045. [38] Sarveswararao, V., Ravi, V., Vivek, Y. (2023). “ATM cash demand forecasting in an Indian bank with chaos and hybrid deep learning networks”. Expert Systems with Applications, 211, doi:https://doi.org/10.1016/j.eswa.2022.118645. [39] Su, L., Xiong, L., Yang, J. (2023). “Multi-Attn BLS: Multi-head attention mechanism with broad learning system for chaotic time series prediction”. Applied Soft Computing, 132, doi:https://doi.org/10.1016/j.asoc.2022.109831. [40] Szczęsna, A., Augustyn, D., Harężlak, K., Josiński, H., Świtoński, A., Kasprowski, P. (2023). “Datasets for learning of unknown characteristics of dynamical systems”. Scientific Data, 10(1), 79, doi:https://doi.org/10.1038/s41597-023-01978-7. [41] Terziyska, M., Terziyski, Z., Todorov, Y. (2021). “A long-short term memory network for chaotic time series prediction”. In 2021 Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 1-6, doi:https://doi.org/10.1109/BdKCSE53180.2021.9627283. [42] Thoai, V.P., Kahkeshi, M.S., Huynh, V.V., Ouannas, A., Pham, V.-T. (2020). “A nonlinear five-term system: Symmetry, chaos, and prediction”. Symmetry, 12(5), 865, doi:https://doi.org/10.3390/sym12050865. [43] Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P. and Koumoutsakos, P. (2018). “Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2213), doi:https://doi.org/10.1098/rspa.2017.0844. [44] Wang, L., Dai, L. (2023). “Chaotic time series prediction of multi-dimensional nonlinear system based on bidirectional LSTM model”. Advanced Theory and Simulations, 6(8), doi:https://doi.org/10.1002/adts.202300148. [45] Wen, S.-C., Yang, C.-H. (2021). “Time series analysis and prediction of nonlinear systems with ensemble learning framework applied to deep learning neural networks”. Information Sciences, 572, 167-181, doi:https://doi.org/10.1016/j.ins.2021.04.094. [47] Wu, T., Gao, X., An, F., Kurths, J. (2023). “The complex dynamics of correlations within chaotic systems”. Chaos, Solitons & Fractals, 167, doi:https://doi.org/10.1016/j.chaos.2022.113052. [48] Yanan, G., Xiaoqun, C., Bainian, L., Kecheng, P. (2020). “Chaotic time series prediction using LSTM with CEEMDAN”. Journal of Physics: Conference Series, 1617(1), doi:https://doi.org/10.1088/1742-6596/1617/1/012094. [49] Yeo, Y., Um, D. (2025).“The butterfly effect: Color-guided image generation from unconditional diffusion models”. IEEE Access, 13, 27794-27804, doi:https://doi.org/10.1109/ACCESS.2025.3539101. [50] Yurovsky, V.A. (2023). “Exploring integrability-chaos transition with a sequence of independent perturbations”. Physical Review Letters, 130(2), doi:https://doi.org/10.1103/PhysRevLett.130.020404. [51] Zhou, S., Guo, S., Du, B., Huang, S., Guo, J. (2022). “A hybrid framework for multivariate time series forecasting of daily urban water demand using attention-based convolutional neural network and long short-term memory network”. Sustainability, 14(17), doi:https://doi.org/10.3390/su141711086. [52] Zuo, X., Zhu, R., Zhou, Y. (2023). “Online tracking and prediction of slip ring degradation using chaos theory based on LSTM neural network”. Measurement Science and Technology, 34(5), doi:https://doi.org/10.1088/1361-6501/acb5b6. | ||
| آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 3 | ||