 
				| تعداد نشریات | 46 | 
| تعداد شمارهها | 1,226 | 
| تعداد مقالات | 10,516 | 
| تعداد مشاهده مقاله | 20,649,023 | 
| تعداد دریافت فایل اصل مقاله | 14,169,558 | 
| Ritz-Approximation Method for Solving Variable-Order Fractional Mobile-Immobile Advection-Dispersion Equations | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آبان 1404 اصل مقاله (1.25 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.72692.1267 | ||
| نویسندگان | ||
| Sommayeh Sheykhi1؛ Mashallah Matinfar1؛ Mohammad Arab Firoozjaee* 2 | ||
| 1Department of Mathematics, University of Mazandaran, Babolsar, Iran. | ||
| 2Department of Mathematics, University of Science and Technology of Mazandaran, Behshahr, Iran. | ||
| چکیده | ||
| The advection-dispersion, variable-order differential equations have a vast application in fluid physics and energy systems. In this study, we propose a Ritz-approximation method using shifted Legendre polynomials to construct approximate numerical solutions for these equations. The proposed method discretizes the original problem, converting it into a system of nonlinear algebraic equations that can be solved numerically at selected points. We discuss the error characteristics of the proposed method. For validation, the presented examples are compared with exact solutions and with prior results. The results indicate that the proposed method is highly effective. | ||
| تازه های تحقیق | ||
| 
 | ||
| کلیدواژهها | ||
| Caputo fractional derivative؛ Mobile-immobile advection-dispersion؛ Polynomial basis functions؛ Time variable fractional order؛ Satisfiers function | ||
| مراجع | ||
| [1] Adel El-Sayed, A., Agarwal, P. (2019). “Numerical solution of multi-term variable-order fractional differential equations via shifted Legendre polynomials”. Mathematical Methods in the Applied Sciences, 11, 3978-3991, doi: https://doi.org/10.1002/mma.5627. [2] Akhavan Ghassabzade, F., Bagherpoorfard, M. (2024). “Mathematical modeling and optimal control of carbon dioxide emissions”. Control and Optimization in Applied Mathematics, 9(1), 195-202, doi: https://doi.org/10.30473/coam.2023.67777.1233. [3] Atangana, A. (2015). “On the stability and convergence of the time-fractional variable order telegraph equation”. Journal of Computational Physics, 293, 104-114, doi: https://doi.org/10.1016/j.jcp.2014.12.043. [4] Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W. (2001). “Fractional dispersion, le´vy motion, and the MADE tracer tests”, Transport in Porous Media, 42, 211-240, doi: https://doi.org/10.1023/A:1006733002131. [5] Chechkin, A.V., Gorenflo, R., Sokolov, I.M. (2005). “Fractional diffusion in inhomogeneous media”. Journal of Physics A: Mathematical and General, 38(42), 679-684, doi: https://doi.org/10.1088/0305-4470/38/42/L03. [6] Deng, Z., Bengtsson, L., Singh, V.P. (2006). “Parameter estimation for fractional dispersion model for rivers”. Environmental Fluid Mechanics, 6, 451-475, doi: https://doi.org/10.1007/s10652-006-9004-5. [7] Ebadi, G., Krishnan, E.V., Labidi, M., Zerrad, E., Biswas, A. (2011). “Analytical and numerical solutions to the Davey-Stewartson equation with power-law nonlinearity”. Waves in Random and Complex Media, 21(4), 559-590, doi: https://doi.org/10.1080/17455030.2011.606853. [8] Elgindy, K.T. (2024). “Fourier–Gegenbauer pseudospectral method for solving periodic fractional optimal control problems”. Mathematics and Computers in Simulation, 225, 148-164, doi: https://doi.org/10.1016/j.matcom.2024.05.003. [9] Hao, E., Zhang, J., Jin, Zh. (2024). “Dynamic analysis and optimal control of HIV/AIDS model with ideological transfer”. Mathematics and Computers in Simulation, 226, 578-605, doi: https://doi.org/10.1016/j.matcom.2024.07.012. [10] Haq, S., Ghafoor, A., Hussain, M. (2019). “Numerical solutions of variable order time fractional (1+1)-and (1+2)-dimensional advection dispersion and diffusion models”. Applied Mathematics and Computation, 360, 107-121, doi: https://doi.org/10.1016/j.amc.2019.04.085. [11] Heydari, M.H. (2016). “A new approach of the Chebyshev wavelets for the variable-order time fractional mobile-immobile advection-dispersion model”. arXiv preprint arXiv:1605.06332, doi: https://doi.org/10.48550/arXiv.1605.06332. [12] Holmes, R. (1970). “An Introduction to the Approximation of Functions (Theodore J. Rivlin)”. SIAM Review, 12(2), doi: https://doi.org/10.1137/1012069. [13] Ingman, D., Suzdalnitsky, J. (2004). “Control of damping oscillations by fractional differential operator with time-dependent order”. Computer Methods in Applied Mechanics and Engineering, 193, 5585-5595, doi: https://doi.org/10.1016/j.cma.2004.06.029. [14] Jiang, W., Liu, N. (2017). “A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model”. Applied Numerical Mathematics, 119, 18-32, doi: https://doi.org/10.1016/j.apnum.2017.03.014. [15] Kim, S., Levent Kavvas, M. (2006). “Generalized Fick’s law and fractional ADE for pollution transport in a river: Detailed derivation”. Journal of Hydrologic Engineering, 11(1), doi: https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(80). [16] Lorenzo, C.F., Hartley, T.T. (2002). “Variable order and distributed order fractional operators”. Nonlinear Dynamics, 29(1), 57-98, doi: https://doi.org/10.1023/A:1016586905654. [17] Marasi, H.R., Derakhshan, M.H. (2023). “Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis”. Mathematics and Computers in Simulation, 205, 368-389, doi: https://doi.org/10.1016/j.matcom.2022.09.020. [18] Parmar, D., Krishna Murthy, S.V.S.S.N.V.G., Rathish Kumar, B.V., Kumar, S. (2025). “Numerical simulation of fractional order double diffusive convective nanofluid flow in a wavy porous enclosure”. International Journal of Heat and Fluid Flow, 112, 109749, doi: https://doi.org/10.1016/j.ijheatfluidflow.2025.109749. [19] Podlubny, I. (1999). “Fractional Differential Equations, An introduction to fractional derivatives”. In: Fractional Differential equations, to Methods of Their Solution and Some of Their Applications. Technical University of Kosice, Slovak Republic, Volume 198: Pages 1-340. [20] Rajagopal, N., Balaji, S., Seethalakshmi, R., Balaji, V.S. (2020) “A new numerical method for fractional order Volterra integro-differential equations”. Ain Shams Engineering Journal, 11(1), 171-177, doi: https://doi.org/10.1016/j.asej.2019.08.004. [21] Salehi, F., Habibollah, S., Mohseni Moghadam, M. (2018). “A Hahn computational operational method for variable order fractional mobile-–immobile advection–dispersion equation”. Mathematical Sciences, 12(2), 91-101, doi: https://doi.org/10.1007/s40096-018-0248-2. [22] Samko, S.G., Ross, B. (1993). “Integration and differentiation to a variable fractional order”. Integral Transforms and Special Functions, 1(4), 277-300, doi: https://doi.org/10.1080/10652469308819027. [23] Shen, S., Liu, F., Chen, J., Turner, I., Anh, V. (2012). “Numerical techniques for the variable order time fractional diffusion equation”. Applied Mathematics and Computation, 218(22), 10861-10870, doi: https://doi.org/10.1016/j.amc.2012.04.047. [24] Tayebi, A., Shekari, Y., Heydari, M.H. (2017). “A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation”. Journal of Computational Physics, 340, 655-669, doi: https://doi.org/10.1016/j.jcp.2017.03.061. [25] Yousefi, S.A., Barikbin, Z. (2011). “Ritz Legendre multiwavelet method for the damped generalized regularized long-wave equation”. Journal of Computational and Nonlinear Dynamics, 7(1), doi: https://doi.org/10.1115/1.4004121. [26] Yousefi, S.A., Lesnic, D., Barikbin, Z. (2012). “Satisfier function in Ritz-Galerkin method for the identification of a time-dependent diffusivity”. Journal of Inverse and Ill-Posed Problems, 20(no.5-6), 701-722, doi: https://doi.org/10.1515/jip-2012-0020. [27] Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M. (2013). “A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model”. Computers and Mathematics with Applications, 66(5), 693-701, doi: https://doi.org/10.1016/j.camwa.2013.01.031. | ||
| آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 2 | ||