 
				| تعداد نشریات | 46 | 
| تعداد شمارهها | 1,226 | 
| تعداد مقالات | 10,516 | 
| تعداد مشاهده مقاله | 20,649,023 | 
| تعداد دریافت فایل اصل مقاله | 14,169,558 | 
| Model Predictive Control of Melanoma Treatment Enhanced by Particle Swarm Optimization | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آبان 1404 اصل مقاله (647.7 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.74268.1300 | ||
| نویسندگان | ||
| Masrour Dowlatabadi1؛ Maryam Nikbakht* 2 | ||
| 1Department of electrical engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
| 2Department of Mathematics, Payame Noor University, Iran. | ||
| چکیده | ||
| This study analyzes the growth dynamics of melanoma tumor cells and develops a model predictive controller (MPC) using four well-known optimizers to suppress tumor growth, proposing an MPC framework that integrates multiple metaheuristic algorithms for regulating tumor size. All modelling, control design, and simulations are performed in MATLAB, and results indicate that a PSO-based MPC offers satisfactory response and rapid convergence, achieving effective tracking and disturbance rejection. The study assumes precise drug dosing is feasible and demonstrates substantial tumor-size reduction through the integration of MPC with metaheuristic optimization. Simulation findings reveal that the PSO-based MPC achieves notable improvement in tumor reduction and overall control performance, outperforming other metaheuristic approaches, as evidenced by comparative error metrics: ITAE ≈ 1.9377 × 10^3, IAE ≈ 244.45, MSE ≈ 4.6863 × 10^3. | ||
| تازه های تحقیق | ||
| 
 | ||
| کلیدواژهها | ||
| Model predictive control؛ Melanoma cancer؛ Tumor growth control؛ Biomedical control systems؛ Metaheuristic optimization | ||
| مراجع | ||
| [1] Bachmann, F., Koch, G., Pfister, M., Szinnai, G., Schropp, J. (2021). “OptiDose: Computing the individualized optimal drug dosing regimen using optimal control”, Journal of Optimization Theory and Applications, 189, 46-65, doi:https://doi.org/10.1007/s10957-021-01819-w. [2] Bajzer, Z. Marušić, M., Vuk-Pavlović, S. (1996). “Conceptual frameworks for mathematical modeling of tumor growth dynamics”, Mathematical and Computer Modelling, 23(6), 31-46, doi:https://doi.org/10.1016/0895-7177(96)00018-0. [3] Batmani, Y., Khaloozadeh, H. (2013). “Optimal drug regimens in cancer chemotherapy: A multiobjective approach”, Computers in Biology and Medicine, 43(12), 2089-2095, doi:https://doi.org/10.1016/j.compbiomed.2013.09.026. [4] Bernard, A., Kimko, H., Mital, D., Poggesi, I. (2012). “Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development”, Expert Opinion on Drug Metabolism & Toxicology, 8(9), 1057-1069, doi:https://doi.org/10.1517/17425255.2012.693480. [5] Camacho, E.F., Alba, C.B. (2013). “Model predictive control”, Springer Science & Business Media, doi:https://doi.org/10.1007/978-0-85729-398-5. [6] Chen, T., Kirkby, N.F., Jena, R. (2012). “Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation”, Computer Methods and Programs in Biomedicine, 108(3), 973-983, doi:https://doi.org/10.1016/j.cmpb.2012.05.011. [7] Chhetri, B., Bhagat, V.M., Vamsi, D.K., Ananth, V.S., Prakash, B., Muthusamy, S., Deshmukh, P., Sanjeevi, C.B. (2022). “Optimal drug regimen and combined drug therapy and its efficacy in the treatment of COVID-19: A within-host modeling study”, Acta Biotheoretica, 70(2), 16, doi:https://doi.org/10.1007/s10441-022-09440-8. [8] Claret, L., et al. (2009). “Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics”, Journal of Clinical Oncology, 27(25), 4103-4108, doi:https://ascopubs.org/doi/10.1200/jco.2008.21.0807. [9] Colton Connor, C., Quinton, L., Sweazy, A., McMasters, K., Hao, H. (2025). “Clinical approaches for the management of skin cancer: A review of current progress in diagnosis, treatment, and prognosis for patients with melanoma”, Cancers, 17(4), 707, doi:https://doi.org/10.3390/cancers17040707. [10] Florian Jr, J.A., Eiseman, J.L., Parker, R.S. (2008). “Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model”, Computers in Biology and Medicine, 38(3), 339-347, doi:https://doi.org/10.1016/j.ifacol.2017.08.1594. [11] Frances, N., Claret, L., Bruno, R., Iliadis, A. (2011). “Tumor growth modeling from clinical trials reveals synergistic anticancer effect of the capecitabine and docetaxel combination in metastatic breast cancer”, Cancer Chemotherapy and Pharmacology, 68(6), 1413-1419, doi:https://doi.org/10.1007/s00280-011-1628-6. [12] Hadjiandreou, M.M., Mitsis, G.D. (2014). “Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design”, IEEE Transactions on Biomedical Engineering, 61(2), 415-425, doi:https://doi.org/10.1109/tbme.2013.2280189. [13] Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L. (1999). “Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response and postvascular dormancy”, Cancer Research, 59(19), 4770-4775. [14] Housman, G., Byler, Sh., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., Sarkar, A. (2014). “Drug resistance in cancer: An overview”, Cancers, 6(3), 1769-1792, doi:https://doi.org/10.3390/cancers6031769. [15] Javadi, A., Keighobadi, F., Nekoukar, V., Ebrahimi, M. (2019). “Finite-set model predictive control of melanoma cancer treatment using signaling pathway inhibitor of cancer stem cell”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(4), 1504-1511, doi:10.1109/TCBB.2019.2940658. [16] Khaloozadeh, H., Yazdanbakhsh, P., Homaei-Shandiz, F. (2008). “The optimal dose of drug in neoadjuvant Chemotherapy before surgery for the patients suffering from breast cancer stage III”, Iranian Journal of Biomedical Engineering, 1(4), 319-334, doi:https://doi.org/10.22041/ijbme.2008.13551. [17] Kovács, L., Szeles, A., Sápi, J., A Drexler, D., Rudas, I., Harmati, I., Sápi, Z. (2014). “Model-based angiogenic inhibition of tumor growth using modern robust control method”, Computer Methods and Programs in Biomedicine, 114(3), 98-110, doi:https://doi.org/10.1016/j.cmpb.2014.01.002. [18] Laird, A.K. (1964). “Dynamics of tumour growth”, British Journal of Cancer, 18(3), 490-502, https://doi.org/10.1038/bjc.1964.55. [19] Luos, W., Tan, X., Shen, J. (2023). “Optimal treatment strategy for cancer based on mathematical modeling and impulse control theory”, Axioms, 12(10), 916, doi:https://doi.org/10.3390/axioms12100916. [20] McCulloch, A.D., Huber, G. (2002). “Integrative biological modelling in silico”, ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposia 247, Volume 247, 4-19, doi: https://doi.org/10.1002/0470857897.ch2. [21] Michor, F., Beal, K. (2015). “Improving cancer treatment via mathematical modeling: Surmounting the challenges is worth the effort”, Cell, 163(5), 1059-1063, doi:https://doi.org/10.1016/j.cell.2015.11.002. [22] Moradi, H., Sharifi, M., Vossoughi, G. (2015). “Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: A comparison between three hypotheses”, Computers in Biology and Medicine, 56, 145-157, doi:https://doi.org/10.1016/j.compbiomed.2014.11.002. [23] Nazari Monfared, M., Ahmad Fakharian, A., Menhaj, M.B., Abbasi, R. (2020). “The application of power series expansion to optimal control of an immune oncology nonlinear dynamic problem”, AUT Journal of Modeling and Simulation, 52(1), 117-128, doi:https://doi.org/10.22060/miscj.2020.17884.5198. [24] Pasqua, O.E.D. (2011). “PKPD and disease modeling: Concepts and applications to oncology”, Kimko, H., Peck, C. (eds) Clinical Trial Simulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 1. Springer, New York, NY, doi:http://dx.doi.org/10.1007/978-1-4419-7415-0_13. [25] Ribba, B., et al. (2014). “A review of mixed effects models of tumor growth and effects of anticancer drug treatment used in population analysis”, CPT: Pharmacometrics & systems Pharmacology, 3(5), 1-10, doi:https://doi.org/10.1038/psp.2014.12. [26] Richalet, J., Rault, A., Testud, J., Papon, J. (1978). “Model predictive heuristic control: Applications to industrial processes”, Automatica, 14(5), 413-428, doi:https://doi.org/10.1016/0005-1098(78)90001-8. [27] Roky, A.H., Murshedul Islam, M., Fuad Ahasan, M., Saqline Mostaq, M., Zihad Mahmud, M., Nurul Amin, M., Ashiq Mahmud, M. (2025). “Overview of skin cancer types and prevalence rates across continent”, Cancer Pathogenesis and Therapy, 3(2), 89-100, doi:https://doi.org/10.1016/j.cpt.2024.08.002. [28] Sbeity, H, Younes, R. (2015). “Review of optimization methods for cancer chemotherapy treatment planning”, Journal of Computer Science & Systems Biology, 8(2), 74-95, doi:10.4172/jcsb.1000173. [29] Scagliotti, A., Scagliotti, F., Deborah Locati, L., Sottotetti, F. (2025). “Ensemble optimal control for managing drug resistance in cancer therapies”, Optimization and Control, 22, doi:https://doi.org/10.48550/arXiv.2503.08927. [30] Takebe, N., Harris, P.J., Warren, R.Q., Ivy, S.P. (2011). “Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways”, Nature Reviews Clinical Oncology, 8(2), 97-106, doi:https://doi.org/10.1038/nrclinonc.2010.196. [31] Tan, K.C., Khor, E.F., Cai, J., Heng, C., Lee, T.H. (2002). “Automating the drug scheduling of cancer chemotherapy via evolutionary computation”, Artificial Intelligence in Medicine, 25(2), 169- 185, doi:https://doi.org/10.1016/S0933-3657(02)00014-3. [32] Unal, C., Salamci, M.U. (2017). “Drug administration in cancer treatment via optimal nonlinear state feedback gain matrix design”, IFAC-Papers OnLine, 50(1), 9979-9984, doi:https://doi.org/10.1016/j.ifacol.2017.08.1594. [33] Wang, Y., et al. (2009). “Elucidation of relationship between tumor size and survival in non – small - cell lung cancer patients can aid early decision making in clinical drug development”, Clinical Pharmacology & Therapeutics, 86(2), 167-174, doi:https://doi.org/10.1038/clpt.2009.64. [34] Waseh, S.B., Lee, J. (2023). “Advances in melanoma: Epidemiology, diagnosis, and prognosis”, Frontiers in Medicine, 10, doi:https://doi.org/10.3389/fmed.2023.1268479. [35] Weidner, N. et al. (1992). “Tumor angiogenesis: A new significant and independent prognostic indicator in early stage breast carcinoma”, Journal of the National Cancer Institute, 84(24), 1875-1887, doi:https://doi.org/10.1093/jnci/84.24.1875. [36] Weng, G., Bhalla, U.S., Iyengar, R. (1999). “Complexity in biological signaling systems”, Science, 284(5411), 92-96, doi:https://doi.org/10.1126/science.284.5411.92. [37] Westman, J.J., Fabijonas, B.R., Kern, D.L., Hanson, F.B. (2002). “ Probabilistic rate compartment cancer model: Alternate versus traditional chemotherapy scheduling”, Pasik-Duncan, B. (eds), Stochastic Theory and Control. Lecture Notes in Control and Information Sciences, vol 280. Springer, Berlin, Heidelberg, doi:https://doi.org/10.1007/3-540-48022-6_33. [38] Xiao, Y.G., Wang, W., Gong, D., Mao, Z.F. (2018). “Effects of NOTCH1 signaling inhibitor γ-secretase inhibitor II on growth of cancer stem cells”, Oncology Letters, 94(6), 654, doi:https://doi.org/10.3892/ol.2018.9377. [39] Yin, Q., Shi, X., Lan, S., Jin, H., Wu, D., Yin, Q., Shi, X., Lan, S. Jin, H., Wu, D. (2021). “Effect of melanoma stem cells on melanoma metastasis (Review)”, Oncology Letters, 22(1), doi:https: //doi.org/10.3892/ol.2021.12827. | ||
| آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 2 | ||