| تعداد نشریات | 46 | 
| تعداد شمارهها | 1,226 | 
| تعداد مقالات | 10,525 | 
| تعداد مشاهده مقاله | 20,837,955 | 
| تعداد دریافت فایل اصل مقاله | 14,192,294 | 
Some Hybrid Conjugate Gradient Methods Based on Barzilai-Borwein Approach for Solving Two-Dimensional Unconstrained Optimization Problems | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 24 مهر 1404 اصل مقاله (373.58 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.74997.1317 | ||
| نویسندگان | ||
| Farzad Rahpeymaii* ؛ Majid Rostami | ||
| Department of Basic Sciences, Technical and Vocational University (TVU), Tehran, Iran. | ||
| چکیده | ||
| The conjugate gradient ({CG}) method is one of the simplest and most widely used approaches for unconstrained optimization, and our focus is on two-dimensional problems with numerous practical applications. We devise three hybrid {CG} methods in which the hybrid parameter is constructed from the Barzilai–Borwein process, and in these hybrids, the weaknesses of each constituent method are mitigated by the strengths of the others. The conjugate gradient parameter is formed as a linear combination of two well-known CG parameters, blended by a scalar, enabling our new methods to solve the targeted problems efficiently. Under mild assumptions, we establish the descent property of the generated directions and prove the global convergence of the hybrid schemes. Numerical experiments on ten practical examples indicate that the proposed hybrid {CG} methods outperform standard {CG} methods for two-dimensional unconstrained optimization. | ||
تازه های تحقیق  | ||
 
  | ||
| کلیدواژهها | ||
| Unconstrained optimization؛ Hybrid conjugate gradient methods؛ Wolfe conditions؛ Global convergence؛ Barzilai-Borwein process | ||
| مراجع | ||
| 
			 [1] Barzilai, J., Borwein, J.M. (1988). “Two-point step size gradient method”. IMA Journal of Numerical Analysis, 8, 141-148, doi:https://doi.org/10.1093/imanum/8.1.141. [2] Dai, Y.H., Liao, L.Z. (2001). “New conjugacy conditions and related nonlinear conjugate gradient methods”. Applied Mathematics and Optimization, 43, 87-101, doi:https://doi.org/10.1007/s002450010019. [3] Dai, Y.H., Yuan, Y. (1999). “A nonlinear conjugate gradient method with a strong global convergence property”. SIAM Journal on Optimization, 10(1), 177-182, doi:https://doi.org/10.1137/S1052623497318992. [4] Diphofu, T., Kaelo, P., Kooepile-Reikeletseng, S., Koorapetse, M., Sam, C.R. (2024). “Convex combination of improved Fletcher-Reeves and Rivaie-Mustafa-Ismail-Leong conjugate gradient methods for unconstrained optimization problems and applications”. Quaestiones Mathematicae, 47(12), 2375–2397, doi:https://doi.org/10.2989/16073606.2024.2367715. [5] Fletcher, R. (2000). “Practical Methods Of Optimization: Vol. 1 Unconstrained Optimization”. 2nd ed., John Wiley and Sons, Chichester, doi:https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203. [6] Fletcher, R., Reeves, C. (1964). “Function minimization by conjugate gradients”. The Computer Journal, 7(2), 149-154, doi:https://doi.org/10.1093/comjnl/7.2.149. [7] Hager, W.W., Zhang, H. (2005). “A new conjugate gradient method with guaranteed descent and an efficient line search”. SIAM Journal on Optimization, 16(1), 170-192, doi:https://doi.org/10.1137/030601880. [8] Hager, W., Zhang, H. (2006). “A survey of nonlinear conjugate gradient methods”. Pacific Journal of Optimization, 2(1), 35-58.[9] Hestenes, M.R., Stiefel, E.L. (1952). “Methods of conjugate gradients for solving linear systems”. Journal of Research of the National Institute of Standards and Technology, 49(6), 409-436, doi: [10] Liu, Y.L., Storey, C. (1991). “Efficient generalized conjugate gradient algorithms, Part 1: Theory”. Journal of Optimization Theory and Applications, 69(1), 129-137, doi:https://doi.org/10.1007/BF00940464. [11] Mustafa, A.A. (2023). “New spectral LS conjugate gradient method for nonlinear unconstrained optimization”. International Journal of Computer Mathematics, 100(4), 838-846, doi:https://doi.org/10.1080/00207160.2022.2163165. [12] Nocedal, J., Wright, S.J. (2006). “Numerical optimization”. Springer-Verlag, New York, NY, doi:https://doi.org/10.1007/978-0-387-40065-5. [13] Polyak, B.T. (1969). “The conjugate gradient method in extreme problems”. USSR Computational Mathematics and Mathematical Physics, 9(4), 94-112, doi:https://doi.org/10.1016/0041-5553(69)90035-4. [14] Polyak, E., Ribière, G. (1969). “Note sur la convergence de directions conjugées”. Revue française d'informatique et de recherche opérationnelle. Série rouge, 3(R1), 35-43. [15] Rahpeymaii, F., Rostami, M. (2018). “A new hybrid conjugate gradient method based on eigenvalue analysis for unconstrained optimization problems”. Control and Optimization in Applied Mathematics, 3(1), 27-43, doi:https://doi.org/10.30473/coam.2019.44564.1108. [16] Rivaie, M., Mamat, M., Abashar, A. (2015). “A new class of nonlinear conjugate gradient coefficients with exact and inexact line searches”. Applied Mathematics and Computation, 268, 1152-1163, doi:https://doi.org/10.1016/j.amc.2015.07.019. [17] Rivaie, M., Mamat, M., June, L.W., Mohd, I. (2012). “A new class of nonlinear conjugate gradient coefficients with global convergence properties”. Applied Mathematics and Computation, 218(22), 11323-11332, doi:https://doi.org/10.1016/j.amc.2012.05.030.  | ||
| 
			 آمار تعداد مشاهده مقاله: 8 تعداد دریافت فایل اصل مقاله: 5 			 | 
		||