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1 Introduction

There are many issues that are biologically interesting in our environment that require a sub-
stantial understanding of the critical behavior and intrinsic nature of mathematical modeling.
Instead of calculating the change in a particular population , the main objective of the model’s
development is to examine how complex it is in an ecosystem. Mathematical modeling of
predator and prey population dynamics has emerged as an excellent research topic in the field
of mathematical ecology. Model-based studies of ecological problems were first developed by
Lotka and Volterra [28, 49]. In the Lotka-Volterra model [46], the preédator population depends
on the number of prey. This situation is not considered when there is a scarcity of prey and
the predator must look for new prey. In the investigation of the interaction of population dy-
namics, a functional response plays an essential role in ityand the functional response is the
consumption rate of the predator as given by a function-of prey.density. There are numerous
types of functional responses effectively acting in population dynamics, they are Holling type
I, II, and I [ 13, 23, 30, 35, 48], Crowley-Martin [12,47], Hassell-Varley [22], Beddington [6]
and ratio-dependent [4, 43].

The management of renewable resources, such as fisheries and forests, through science
is the focus of bioeconomic modeling. In recent times, the mathematical modeling of prey-
predator models has grown to be‘an extremely fascinating field of study for many economists,
mathematicians, and ecologists. Due to/its significance, the issue of optimal harvesting in
predator-prey systems rules both ecology and bioeconomics. On the basis of Clark’s [10]
demonstration of the concept of optimal equilibrium for the combined harvest of two distinct
species, other authors have created their own models. In the absence of a harvest, each popula-
tion adheres to a logistic growth law, whose yield level is proportionate to both its share level
and harvest effort. The population then manages to deliver more benefits and the population
remains stable. Jana et al. [24] discussed the two-dimensional prey-predator system, allowing
for prey refuge/and harvesting in the prey species only. There are numerous works related to
the effect of harvesting on predator-prey interactions, the predator-prey model with selective
harvesting on prey was discussed in [8, 14, 16, 21, 26, 29, 34, 36, 38, 44]. The selective har-
vesting of predators has been studied in [9, 45], and the selective harvesting effect for both
species was investigated in [1, 5]. The authors in [20] explored the impact of harvesting in the
tri-trophic food chain model and, importantly, discussed the existence of maximum sustainable
yield when the top predator is harvested. Safuan et al. investigated a predator-prey model in an
environment enriched by a biotic resource [41].

The food chain model of a two-species population in the context of shared biological re-
sources is studied by Safuan et al. [40]. They analyzed the model, showing that during com-

petition, death occurs between competitors. It plays an important role in shaping ecological

communities. Intraguild predation is also known as exploitation competition or interference
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competition. Aside from the fact that both species face the harvesting process, they must com-
pete to gain shared resources. In [19], the optimal harvest of an intraguild predation model
with varying carrying capacities has been explored. The authors came to the conclusion that
the enrichment parameter has a significant influence on the dynamics of prey, predation, and
resources. The intraguild model’s low, moderate, and high concentrations give diverse natures
such as co-existence, destruction, and limit cycle. Collera and Balilo [11] discussed the dy-
namics of an intraguild predation model with linear harvesting on three species. The authors
in [1] studied two species that compete for shared biological resources in the environment with
harvesting effects. Further, the authors concluded that the harvesting parameter plays a vital
role in the ecosystem because harvesting activities reduce the population in an ecosystem. To
prevent the extinction of the population, harvesting activities need to be controlled. In this sense
the control strategies are essential. For example, Collera and Balilo [25] discussed the control
mechanism for cancer-immune system interaction in an avascular.environment. Mustapha et
al. [32] developed a control strategy for the transmission dynamics of cholera. Different effi-
cient control strategies were considered in the following studies: for corruption dynamics [2],
for vector-borne infections [7], for chickenpox transmission dynamics [37], for carbon dioxide
emissions [3], for Middle East respiratory syndrome transmission [17, 18], for HIV-1 model
related to cancer cells [33], for a class of nonlinear affine systems [15].

Based on the preceding research investigations, we are encouraged to conduct the current
study; we deal with exploitation/strategies in an intraguild predation model with the ratio-
dependent functional response, although this differs from earlier works in some basic assump-
tions.

The main contributions of this study are as follows:

* We develop a new intraguild predation (IGP) model with a ratio-dependent functional
response, which more accurately reflects predator—prey interactions under limited en-
counter rates/and interference—unlike most previous IGP harvesting models that use

prey-dependent responses.

* We incorporate dual harvesting on both prey and predator populations, capturing real-
istic exploitation strategies. Previous studies typically harvest only one species or treat

harvesting implicitly.

* We conduct a complete bioeconomic analysis by deriving the bionomic equilibrium, sus-
tainable yield, profit function, and optimal harvesting policy under economic constraints—

features rarely integrated into IGP systems.

* We identify complex dynamical behavior, including multiple local equilibria, transcrit-

ical and Hopf bifurcations, stability switches, and possible cycles, and we relate these

mathematical outcomes to ecological mechanisms and management implications
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Prey Predator

Biotic resource

Figure 1: Schematic diagram of intraguild predation model

* We provide ecological and economic interpretations of all mathematical conditions, en-
suring that stability results, threshold parameters, and bifurcation conditions are biolog-

ically meaningful for real-world resource management.
Also, we address the following concerns in this paper:
1. The factors might lead to the extinction of the species,
2. The factors encourage the coexistence of all three species,

3. Do both persist as a stable state or oscillations.

Further, we explore the possibilities of bionomic equilibrium and obtain the optimal prin-
ciple of exploitation by using Pontryagin’s maximum principle.

The rest of this paper is organized as follows: In Section 2, we formulate the three-species
intraguild predation model with individual harvesting and ratio-dependent functional response.
In Section 3 some needed preliminaries are discussed. in Section 4, we discuss the existence and
local stability of the feasible equilibrium points. Bifurcation analysis for the constructed model
is carried out in/Section 5. The bionomic equilibrium and optimal harvesting of the proposed
model are given in Section 6. We provide the numerical results in Section 7 and finally, we

discuss and give the short conclusion of this paper in Section 8.

2 Model formulation

In this section, we propose the intraguild predation model with a ratio-dependent functional
response and individual harvesting effects, which is an extension of the model proposed in
Refs. [1,19,40,41]. In[19], the authors studied the predator-prey model with variable carrying

capacity and extended it with independent harvesting techniques as a possible extension of new,

inventions. The model is of the form:
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dX X

2 _ax(1- L) —axy - EX

at ( pz> “ 1%

dy Y

v (1- ) +8XY - By,

a 7 ( qZ)+B 2% (1)
dz

E—Z(c—uX—UY),

X(0)=X0>0,Y(0)=Yy >0, and Z(0) = Zy > 0.

In this paper, we extended the above model by considering that.the predator consumes its
prey in the form of a ratio-dependent type functional response. /We formulate the model as

follows:
dX X aXY
— =X ([1-— 1 X
a ! pZ) X tay UU
dY Y BXY
— =Y |(1-— E5Y.
i @ < qz> T x Ty T 2N )
dZ
a_Z(C—UX—’UY)7

X(O) :X() > O,Y(O) :Yo > 0, and Z(O) = Zo > 0,

where parameters «, 3, a, ¢, c1, ¢2, P, q, E1, F2, u and v are positive constants, X and Y be the
size of prey and predator population, respectively, and Z be the size of biotic resources. The
parameter a be the half-saturation constant, F; and F5 are the independent harvesting effects of
prey and predator, ¢;, (i = 1, 2) stands growth rates of prey and predator, respectively; pZ and
qZ be the environmental carrying capacities of prey and predator, respectively. It is assumed
that 0 < p < 1and 0 < ¢ < 1 with p+ ¢ = 1 sothat pZ + ¢Z (total carrying capacity). In our
model, p and g represent the proportions of a shared limited resource allocated or utilized by
two interacting species. The constraint p + ¢ = 1 ensures that the entire available resource is
partitioned between the two species, with.no unused or “extra” resource. This reflects a biolog-
ically realistic scenario where resources are fully exploited in competitive environments.The
conditions p, ¢ € (0;1) exclude trivial or ecologically unrealistic cases of exclusive monopo-
lization(e.g., p = 1,q = 0) or no resource use. Thus, the model focuses on partial resource
sharing, which is central in ecological theories of niche partitioning and coexistence. If p > ¢,
the population of prey gets a larger proportion of biotic resources, resulting in a greater carrying
capacity. That means prey can grow more than predators. Biotic resources with growth rate
are absorbed respectively by prey and predator for X and SY, with v and v being constant,
Because Z is a biotic resource, rises or reduces in its size could affect one or both prey and
predator populations. The constants « and 3 stand for the capturing rate and the conversion
rate of the consumed prey to predator, respectively.
To simplify the dynamical analysis and facilitate interpretation of the results, we nondimen-

sionalize the model system (2) using the following transformation: X — %, Y — %, Z —

% t— é then the model (2) reduces the following form
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dzx :a:(l—f) _ary .

cCiTt z rT+y
asx
ﬁz,«ly(l_ﬁ)+27y_h2y’ 3)
dt z T+y
dz ( )
— =zl —mx—n
dt y7
Where alz%cql,hl - %77”1 = %7’7 = %70/2:%,]7;2 = Ejigl’l — é7m — %and

n = .-, with initial conditions z(0) = o > 0,y(0) = yo > 0, and 2(0) = zp > 0. Because of
the mathematical complexity at the singular point (0, 0, 0), the ratio-dependent models create
richer and more complex dynamics. Next, we follow the idea in [27], that is, since lim(, ,,) —
(0,0), the domain of % to {(z,y,2)} : * > 0,y > 0,z > 0 may be extended so that
(0,0, 0) becomes a trivial solution to (3). The aim of thisstudy is to examine and illustrate the

complexity of the model described above.

3 Preliminaries

In this section, we will discuss the positive invariance and boundedness of solutions for the
model (3).

3.1 Positive invariant

As the model in (3) describes prey-predator dynamics, it is crucial to demonstrate the positivity|
ofthe solutions. In a biological sense, positivity means that the population remains non-negative
(survival of the species). To prove this, we invoke the following theorem from [42].

Theorem 1. , All solutions of the model (3) with initial conditions

xo > 0,y0 > 0land z¢ > 0 are positive.

\Proof. From (3), we obtained

(1) =z exp /OT ((1 - %) - :L'a—li-yy - h1> dt},

y(t) = yoexp /0 (n (1 = %) + xafy = h2> dt} , (4)
z(t) = zp exp / (I — mx — ny) dt] .
0

Here, for all t > 0:

{zog > 0,90 > 0,20 > 0} = {z(¢t) > 0,y(t) > 0,2(t) > 0},

i.e., the positive octant is invariant [
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3.2 Boundedness

Theorem 2. All solutions of model (3) which originates in Ri‘r are uniformly bounded.

\Proof. Let us define the function

Q:a2w+a2y+z7 (5)
which implies that
s 2 2
' = a9x — @t _ ashix 4+ a1r1y — any-
—hga1y + 2l — mxz — nyz
= —(agx + a1y + z) + (2a2 = hi)z
a2x2
Harr + a1 = ho)y (A 1)z ==—
2
L .
z
— 2 _ 2 2
ds) Lo < (2a2 — 1) N (air1 — h2) . (1+1)
dt day dayyry 4
= M

)

 @Qas—h1)? | (aari—h2)¥ | (141)?
where M = 1o + Taiom e

Integrating the above equation and applying the differential inequality theorem, we have
0<Q< M (1 — eit) +Q(z(0),y(0), 2(0)),
for t — oo then we have
0< Q< M+Q(x(0),y(0), 2(0)).

Thus, the solution space (z, y, z) is bounded in the region R3 . O

4 Existence and local stability of equilibria

In this section, we discuss the existence and local stability of the biologically feasible equilib-
rium points for the model (3) as follows:

4.1 Existence of equilibria

For Model (3), we have the following equilibrium points
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1. The trivial equilibrium point Cy(0, 0, 0) always exists.

2. The prey free equilibrium point C; (0 L __riyl ) :

o (T‘l—hz)n

3. The predator free equilibrium point Cs (%, 0, m> .

4. The interior equilibrium point C* (x*, y*, z*) , where
. l—mz*

Yy =—
n

. nr Iyz* 4y P4 mPy e 2—nr yma 2 —2rlimiry

 rnlatrnl—r nmattasn2cr—hon2r*=lnhothonma*’

and x* is the positive root of the following cubic equation,
012" 4 09x*? + o33 FEy = 0, (6)

where

oL =— mn2a2 + n3a2 - mznhg + 2mn2h2

—n3hy + mPnry = 2mn’ri +nry — m2yry
+ 2m2nyr + mPyair, — minyair
+ m?”yhlrl — 2m2n7h17“1 + an'yhlrl,

oo =lmnhy— In*hy — lmnry + In’ry + 3lm27r1
— dmnyry Fln2yr, — 3lm%yar
+ 2lmnyair; — 3lm2’yh17’1 + dlmnyhyry
— In*yhyry,

o3 =lndas+ Imn’hy — In3hy — Imn®ry + Inrq
— 3B3mAyr + 32myarr — Pryair
+ 3l2m7h1r1 — 2l2n’yh1r1,

oy = — ’n’hs + ’n’ry + l3’yr1 — l3’ya17“1 - l3’yh1T1.

It is difficult to say anything about the number of positive roots of Equation (6). We discuss
it numerically in the numerical section. Let us assume x* is the positive root of Equation (6),

then C*(x*, y*, 2*) be the interior equilibrium point of the model (3).
Theorem 3. [39] For Model (3), we have

(1). The equilibrium C exists only if r; > hg. Similarly, the equilibrium Cs exists only if
1> hy.

(ii). The interior equilibrium C™ exists, such that 2* is the positive root of Equation (6), and

also satisfies [ > ma*
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4.2 Local stability analysis

First, we consider the conditions for the possibilities of trajectories tending to (0,0, 0). For this,
we introduce © = x/y and v = y/z and the change of variables (x,y, z) — (u,v, z). Then,|

the model (3) can be written as:

d
u:u<1—uv— a —hl—r1+r17v—m+h2>,

dt u—+1 u+ A1

dv T L AR +

— =v|lrr—rvw+—— —hyg — muvz + nuz

dt 1 17 u+ 1 2 ) (7)
dz — )

7 z muvz — nuz),

u(0) > 0,v(0) > 0,2(0) > 0,

The system (7) has the the equilibrium C(0, 0, 0) and the Jacobian matrix is given by

1—a1—h1—h2 0 0
JCO = 0 r1—27“1’y—h2—l 0 . (8)
0 0 l

Since one of the eigenvalue, say Ay = [ > 0, C is always unstable. A similar analysis can
be carried out for other singular points. Further, assume x* be the positive root of (6) and
C*(x*, y*, z*) be the interior equilibrium point of the model (3). Now, we calculate the Jacobian|
matrix of the model (3) to analyze the local stability behavior of the model (3) at some arbitrary

equilibrium point C(z, y, z), which is given by

Pi1 Pip P
J(xyy, 2y = Pn Py Py |, ©)
P31 Pz Psg

where each entry £; represents the partial derivative of the corresponding functional response

multiplied by its interaction coefficient, ensuring consistency with standard partial derivative

notation.
2x ay? a1z’
Ph=1-—-—"—""F-h, Po=—F7""—,
z (x+y)? (x +y)?
2 2
T a2y
P -5 P = T N9
13 22 5 21 ($ + y)2
2rivy asz? 7”1792
P31 = —mz, P3o = —nz, P33 =1—mx —ny.

Theorem 4. For Model (3)
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i. The prey free equilibrium point C'; is locally asymptotically stable if 1 < a; + ho.

ii. The predator-free equilibrium point CY is locally asymptotically stable, if ha > r1 + a9

and undergoes a transcritical bifurcation if ho = 1 + as.

\Proof. i. The Jacobian matrix at C'j is given below
1-— al — ]’Ll 0 0
—ho)?
Jo, = | a2 hy —m % 5
—mr1yl —7r17v1 0
(ri—h2)n (r1—h2)

the eigenvalues of the Jacobian matrix at C'; are

M =1—a; —hy,
1
Mag=3 ((hg—rl):lz\/(rl—hg)Q — & =ha)l) .

Hence, C; is locally asymptotically stable, if 1 < a; + he.

ii. The Jacobian matrix at Cy is

hl—l —a1 (1_h1)2
Jo, = |10 r1i+az—hy O ;

=1 —nl
1—hy m(1—h1) 0

the eigenvalues of the Jacobian matrix at C5 are

Al =71+ az — ha,

>\2,3=% <(h1—1)i\/(h1—1)2—4(1—h1)l> .

Thus, if hy > r1 -+ ag; then O is locally asymptotically stable. Further, the model
undergoes a transcritical bifurcation if

ho =11 + as.
O

Theorem 5. The interior equilibrium point C*(x*, y*, z*) locally asymptotically stable if

(;_f;gz — % — (;”123;2 < 0,a1 < agand 2a171y2%y? (2 +y)% +aszdy?z > ayriyay’z.

\Proof. The Jacobian matrix at C* is given by

Ci1 €12 Ci3

Jor = | ca1 e ca3 |,
Ca1 C29 ﬂ
\ €31 C3 y
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and the characteristic equation is

A+ A2+ noX +ng =0, (10)
where
ny = —~C1 — C22,
Ny =C11C22 — €23C32 — €21C12 — C13€31,
N3 =C11C22C32 + €13C22C31 — C12€23C31 — C13C21C32,
. alx*y* Tt . —alfﬁ*z . $*2
H="—""——,C2=———=, C13=—
(.7)* +y*)2 Z*’ (l’* _|_y*)2’ 2*2’
. ay® - —nyy' an'y”
21 =7 o N9y €22 = -
(% +y*)%’ z* (x5 +yr)’
2
1 * * *
€23 =— 5 » C31 = —Mz, C32 = —N&..
z
Therefore,
( ) 2a17‘1’y:1:*2y*2 an*3y>k2 a17“1’y:6*2y*3
ning—nzg=(az —ai -
(.’E* +y*)22*2 (CC* +y*>42* (1’* + y*)42*
31:*3 ,r,l,Yl,*Qy* maz*Qy*
+ + R a1my’ —agx”
2*2 2*3 (LL’* + y*)Qz* ( Y )

a2$*2y* xi* ) y* N ’I"%’)/QIE*y*Q
(lﬂ* 4 y*)QZ* % (LE* + y*)22*2 :
Now, n1 > 0,n3 > 0and nyng — ng > 0 if
a1x*y* x*  riyy* asx™y*

= <0, a1 <as,
T o (z* + y*)2 1 2

and

2(117‘1’}/33*2y*2($* +y*)2 +a2$*3y*22* > alrl,yx*Qy*?;Z*'

Ecologically, This mplies that the prey population must grow sufficiently to withstand pre-
dation and harvesting, while predator efficiency and resource conversion rates must be high
enough relative to predator mortality. Together, these conditions ensure that both prey and
predator populations persist at stable levels, avoiding extinction or uncontrolled growth. There-
fore, by Routh-Hurwitz criteria [31], the interior equilibrium point C*(z*, y*, 2*) is locally|

asymptotically stable. O

5 Bifurcation analysis

In this section, we analyze the bifurcation of the model (3) analytically, according to the har-

vesting effect
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5.1 Hopf-bifurcation

The local birth or death of a periodic solution around the equilibrium is known to be a Hopf
bifurcation. The following theorem provides the condition for the existence of Hopf-bifurcation

with respect to the harvesting parameter as a bifurcation parameter.

Theorem 6. The model (3) is subject to a Hopf-bifurcation if the bifurcation parameter h* (as
a harvest parameter) exceeds a critical value. The condition for the occurrence of the Hopf-

bifurcation at h = h* is as follows

1. nl(h*)ng(h*) — n3(h*) = O,

2. = (Re(A(h)))|,_pe # 0,
where ) is the root of the characteristic equation associated with interior equilibrium|

point E*.
\Proof. For h = h*, let the characteristic Equation (10) is in the form of
(\(h*) fma(B)) (A(P*) st (b)) = 0. (11)

Thus, +iy/na(h*) and —ny(h*).are the roots of (11). For the occurrence of the Hopf-
bifurcation, at h; = h*, it must meet the following transversality condition

d *
Jir O] #0

For all h, the roots are generally in the form

/\172(}1) = e(h) + lf(h),
Xsg(h) = —no(h).

Substituting, A1 2(h) = e(h) 4if(h) in (11), we have
M(h) +iN(h) =0,
where

M (h)=¢*(h) + e*(h)ny(h) = 3e(h) f*(h)
— f2(h)na(h)+na(h)e(h)+n1(h)na(h),
N(h)=na(h) f(h) + 2e(h) f(h)n1(h)
+3¢%(h) f(h) — f*(h).
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To accomplish Equation (11), we should have M (h) = 0 and N (h) = 0, then differentiate M
and N with respect to h, we get

UL = i)/ () — paf (h) + ps(h) = 0, (12)
% = pa(h)e'(h) + pr (W) f'(h) + pa(h) = 0, (13)
where
p1(h) =3€(h) + 2¢(h)n1 (h) — 2f'(h) + na(h),
pa(h) =6e(h) £ (h) + 2 (h)na (),
ps(h) =e*(h)n’ (h) — f2(h)n) (h) + ny(h)e(h),
pa(h) =2e(h) f (h)n' (h) + n(h) £ (H).

On multiply, (12) and (13) by p1(h) and pa(h) respectively, then add those equations, we get
sy PL(R)ps(h) + pa(h)pa(h)
e (h) - 2 2 )
pi(h) + pz(h)
substituting, p1(h) = 0 and f(h) = \/na(h) on pi(h), pa(h), p3(h) and p(h)at h = h*, we

obtain

(14)

p1(h7) = =2na(h™); pa(h”) = 2na(B”)\/na(h),
pa(h*) = ny(h*) — na(h*)ni (h%),
pa(h”) = ny(h")y/ma(h*).

Equation (14) implies

¢ (") = ng(h*) — (n(h*)na(h))"
2(n3(h*) + 7’LQ(h*))
If 7} (h*)— (n1 (h*)n2(h*)) # 0, which implies that - (Re(\ (WIN)])—pe # 0,5 = 1,2. This
indicates that oscillatory dynamics (population cycles) emerge when the interaction strengths
and growth rates cross.a critical threshold. For example, if predation efficiency or harvest-
ing rate exceeds certain values, the system shifts from stable coexistence to sustained oscilla-
tions.Hence, the above condition is guaranteed the transversality condition, i.e., the model (3)
exhibits the Hopf-bifurcation at h = h*. The numerically determined critical value A3 confirms
the predicted Hopf bifurcation condition in this Theorem, showing how the loss of equilibrium

stability depends on the harvesting parameter. O

5.2 Transcritical bifurcation

In the following theorems, the existence of transcritical bifurcation has been established using

Sotomayor’s theorem [39] about the two equilibrium points Cs (-~ L0 )and C*(z*, y*. 2

T HL\i h1)
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Theorem 7. The model (3) undergoes a transcritical bifurcation about CQ(%, 0, m) as

the parameter hy crosses the critical value hj = r1 + as.

PProof. Let X = (z,y,z) and

f(X ha) = | ry( —ﬂ)-i-%—/my ;

z (I — mz — ny)

0
fra(Coshe) =1 0 |,
0
0 0
thg(XahQ): 0 -1 0 )
0O O

~1+h  —ar  (1—Mh)?
A= Df(Co, h) = 0 0 0

—1 —In
1—hy m(1—h1)

. _ —In(1—-h
Let V = (v, v, v3)" withv; = #, vy = 1,and v3 = %&i);) and W = (0,1,1)7,
be the eigenvectors of A and A”; respectively corresponding to zero eigenvalue. Now, the three

conditions of Sotomayor’s theorem are.computed below:

(i) WT fry(Coyh3) =0,

i) WD S (Coiz)VI= (0 1 1) [ 0 -1 0 1 || =-1+40

(iif) WT[DQf(CQ, h5)(V, V)] = —2nvs — Za?m . 2r17ml(1—h1) £0.

By Sotomayor Theorem [39], Model (3) undergoes a transcritical bifurcation at the equi-

librium point Cy as the parameter ho varies through the bifurcation value hy = h3. O

Theorem 8. Model (3) undergoes a transcritical bifurcation about C*(z*, y*2*) as the param-

eter ho crosses the critical value hl = r1 + as
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Proof. Let X and f(X, hy) are same as in Theorem 7.

0
fhz (0*7 h?) — _y* )
0
0 0 0
thg(X>h2): 0 -1 0 )
0
B = Df(C* h3)
ala:*y* . ﬁ —a1x*2 ﬁ
(a*+y*)? 2 (z*+y*)? z*2
_ asy* —riyy* asxty* riyyr?
(x*+y*)2 o* (I*+y*) Z*Z
—mz* —nz" 0

Let V = (v1, 02, v3)T and W = (w, w2, w3)T, be the eigenvectors of B and BT, respec-
tively corresponding to zero eigenvalue. Now the three conditions of Sotomayor’s theorem are

computed below:
(i) W' fn, (C*, h3) =0,
(i) WD fny (C*, h3)V] # 0
(i) WT[D2f(C*, h3)(V,V)] #£ 0.

We see that ho = 71 + ao, the equilibrium, C* becomes C5. Then the values of is (i), (ii),
and (iii) are similar to the Theorem 7. By Sotomayor Theorem [39], the model (3) undergoes
a transcritical bifurcation at the equilibrium point C* as the parameter ho varies through the

bifurcation value hy = h3. [

6 Bionomic equilibrium and optimal harvesting
6.1 Bionomic equilibrium

The term bionomic equilibrium is a combination of the concepts of biological equilibrium and
economic equilibrium [22]. From the model (2), a biological equilibrium is provided by

aX _dy _dz

dt dt dt
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Let s1, s2 be the cost of harvesting per unit effort of intraguild prey and intraguild preda-
tor, respectively, and p;p2 be the price per unit biomass of the intraguild prey and intraguild

predator. Then, the economic rent at any time is given by

T =(p1x — s1)E1 + (pay — s2)Es

=T + mo.

Here, 7 and 79 are the net revenues of intraguild prey and intraguild predator species, respec-
tively. Bionomic equilibrium (Zso, Yoo, Zoos Floo, F200) is oObtained by solving the following
simultaneous equations. (The X, Y, Z variables are uppercase in the model (2), now which are

considered lowercase in this section):

e (1—”3)— Y __p=o, (15)
pz T+ ay
@@y>*&t~&=m (16)
qz -+ ay
(c =ux —vy) =0, (17)
= (p1z — $1)E1 + (p2y — s2)E2 = 0. (18)

To determine the bioeconomic equilibrium, we now consider the following cases.

» Case I: If s; > p;z, then the cost is greater than the revenue for intraguild prey species,
the intraguild prey harvesting will be closed i.e., £y = 0. Only intraguild predator har-
vesting will be operational.

From (15)-(17), we have

S

Yoo = —2, (19)
D2

A a7, (20)

pau
o c1(ep2 —vsz) ((cp2 — vs2) + auss)
oo T .
pups ((c1 (cp2 — vs2) + ausy) — auss)

Using (19)-(21)in (15) we obtain

1)

B, e (cp2 — vs2) ((cp2 — vs2) + aucs)
200 —
qcy (cp2 — vs2) (cp2 — vs2 + ausy)
_ Casgpu ((c1 (epa—vs2)+ausy) —aussy)
qcy (cp2—vs2) (cp2 —vsa+ausz)
Bqci(cpz — vs2) (22)
qcr (epa — vs2) (epa — vs2 + aussg)

Therefore, Foo > 0, if

cic2q(cpa—vs2) ((cp2 —vs2) +auca) + fger (cpe—vs2)

cosopu ((cy (epo—189) +auss)+1Lso)
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» Case II: If s > poy, that is, the cost exceeds the revenue for the intraguild predator, the
intraguild predator harvesting will be discontinued, i.e., £5 = 0. Only intraguild prey|

harvesting remains active. Again, from Equations (15)-(17), we derive:

s
Yoo = —, (23)
p1
fop = w’ (24)
p1v

_ (ep1 —usy) (e2s1v + coa (cp1 — usy))

= . 25
< qup (cas1v + coa (ep1 — usy) + Pusy) (25)
Using (23)-(25) in (15), we obtain
_ c1p(epr—usy)(s1v+a (cp1—usy))
Eloo -
pea (epr—usit) (siv+a (cpr—=usy))
B c151qv(cas1v+coa(epr=usy JHBvsy )
pea (epr—ust) (§1v+a (cpr=wusy))

aPC2(CP1—usl) (26)

B pea (cpr—usi) (s1v+a(epr—usy))’

Therefore, oo > 0, if

c1p(ep1—ust) (s1vta (epi—usy)> apea(cpr—us1)
+ c1s1qv(casivtesalcpi—usy +Pvsy ) .

* Case III: If s; < pyx and sy < poy, then the whole model will be in operation, and it

gives
S1
Loo = —,
b1
52
Yoo = —-
b2

Here, the biological parameters ¢, u, v and the economical parameters c1, co, p1, po must

satisfy the relation
c— uS1p1 + vS2P2

pip2
From (15), we have
Z|:E1—|-a82pl—01:|+6131=0. 7)
51p2 + apis2 pp1
Similarly, from (16), we obtain
Bs1p2 C282
ZEQ—ﬁ—CQ + = 0. (28)

r Stp2 T aprs2 1 P2
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6.2 Optimal harvesting policy

We formulate the optimal harvesting problem for the nondimensionalized system, aiming to
maximize the discounted net revenue from harvesting both the prey and the intermediate preda-
tor.

J(Er, By)— / e (pr— 1) B+ (payy—52) F) di, (29)
0

where z(t) and y(t) are prey and intermediate predator densities, £y (¢) and Es(t) are harvesting
efforts, p1, po are unit prices, s1, o are harvesting costs, and 6/> 0 is the-discount rate.
Subject to the constraints of (2) is

0<Ei(t) < E™, i=1,2. (30)
By Pontryagin’s maximum principle, we construct the Hamiltonian as follows for this problem:

H =e ™ ((p1z — 51) E1 +(pay — 52)E2)
+ M (clx <1 — ﬁ) sV Elx)
pz T+ ay

x
+)\2<02y(1——y>—|— by —E2y>
qz T + ay

+ A3 (z(c —uz —vy)),

where, the adjoint variable are \; = X\;j(¢), = 1,2,3.

Now, gTHl =0, % = 0, we have
S
M= (p -2, (31)
X
S
Ao = e % (p2 - ;) . (32)

Then, adjoint equations are

Do _ O Dy oH ax_ oH -
dt~. +0x’ dt Oy dt = 0z

Using H and the third equation of (33), we obtain

d\3  OH _ c1x? ey
dt——ax——<A1pZ2+)\2qz2+A3(C—U$—Uy) s
which implies
dhs \ c12 21
dt 122 2 g2

From (31) and (32), we get

dA s1\ c1a? s9\ o
et () ()

At
at
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which implies
—dt

2 2
e S1\ 1T S92\ C2Y
A3 = —— - — ) — - — ) —==1. 34
3 ) [(p x) pz2 + (p2 y) qu] (34)

Let, the constant of integration vanishes, hence )\ie‘%(i = 1,2, 3) of three species are bounded.
Using (31) and (32), we get from the first two adjoint equations in (33)

5—&( _ﬂ)z_ —8ty B4\ ary  azr
e pr— e Tpib + A1 @tay?  pz

afBy®
—— =\ 35
) @+ ay)? 3uz> ; (35)

and

2
S axr
e 0t (PQ - 2) =— (6_&1?2]52 + 1

y (r+ay)
afry 2y
A | x5+ ) — A3vz . 36
(Graf e\ ) eo
Applying the equilibrium condition and substituting values of A;, for ¢« = 1,2,3 in (35) and
(36), we get
azy c1x
- Dl Ve
p1fa n + (1 . W o) p2
S2 afy®
_|._ — ==
<p2 Y > (@'+ ay)?
U <clx2 S1 coy? S92
(e, ay et (), )Y
oz P x q Y
and

B s ax?
p2Ba =0 <P2 - g) ™ (p1 B ?) ((ﬂchay)Q>
_< _2><‘WW_@Q
p2 Y (.%' + ay)2 qz

v [ cyr? s1 coy? S92
M (0 (o) e (),
0z \ p T q Yy

1 S1 oxy c1x ucle
Br= (py - ) (54 00
T < (r+ay)* pz  Opz

1 S9 aBy? uczy2>
b (-2 - : 37
p1 <p2 y) ((:r +ay)?  dqz 7

and
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IFigure 2: The locally asymptotically stable time series (a), (b), (¢) and phase portrait (d) for the model (3) param-
eters values in (39) with h; = 0.48 and he = 0.25 near C*(0.037733,0.0871706, 0.220599).

S9 afry coxy veay?
+<p2_y> (5—(($+ay)2+ qz >_ 5qz >> (%)

Hence, solve the (37) and (38)/together with steady-state equations we get an optimal solutions

(s, ys, zs) and the optimal harvesting efforts £, and Es.

7 Numerical Results

In order to verify the analytical findings and stability results obtained in the previous sections,
we numerically simulate the solutions of the model (3). We perform numerical tests for the
model (3) with a different set of parameter values. Now, we consider the set of values of the

parameters as

a1 = 050,71 = 0.019, as = 0.79, 7 = 1.02,

(39)
l=0.25m = 0.85, and n = 2.5.

The parameter r is the intrinsic (per-capita) growth rate of prey species, expressed per unit time,
By contrast, ag is an attack/interaction coefficient (rate of successful encounters per predator]
per prey) and has a different dimensional interpretation. Parameters of different types are not
expected to have similar numerical magnitudes because they measure different processes and

have different units. If the time unit in the model is years, r; = 0.019 corresponds to a per-

year growth rate of 1.9% which is entirely plausible for long-lived species or populations under
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IFigure 3: The occurrence of periodic solution in time series (a), (b), (¢) and phase portrait (d) for the model (3)
with the parameter values in (39), h1 = 0.53, and h2 = 0.25 near C'*(0.0372941, 0.0873199, 0.3117236).

(0.1,0.6).

050
hy

0.50
L

Figure 4: The bifurcation diagrams. for the model (3) with parameter values in (39), ho

0.25, and h; €

Figure 5: The bifurcation diagrams for (3) with parameter values in (39), h1 = 0.48, and hs € (0.01,0.25).
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[Figure 6: The z, y, and z components of equilibria C and C* for (3) with parameter values in (39), h1 = 0.48 and
h2 € (0.1, 1). The red curves represent the stable and black curves represent the unstable branches of the equilibria
C5 and C*, respectively. The Hopf bifurcation occurs.at h3, marked by the vertical dashed line, indicating the
transition from stable equilibrium to periodic oscillations.
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[Figure 7: The two-parameter bifurcation diagram for the model (3) in (a) h2 € (0.01,0.8) vs h1 € (0.4,1.0),
(b) ! € (0.1,1.0) vs h1 € (0,0.6), and (¢) I € (0,1) vs ha € (0,0.5) with other parameters are given in (39).
The blue color line denotes the Hopf bifurcation (HB) curve, which separates the stable and periodic regions. The
cyan color line separates the periodic and population extinction regions. The stable region is denoted in green, the
periodic region is given in red, and the brown color represents the region where the populations become extinct.

strong resource limitation or exploitation. If the time unit is days, the value likewise represents
a very slow-growing population (=1.9% per day integrated rate), which may be appropriate for

certain biological or managed populations. We now state the model’s time units explicitly an
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note that an intrinsic growth rate of this order is consistent with species that reproduce slowly|
or have strong density dependence/harvesting pressure.

Now, we investigate the harvesting parameters individually. In order to show the ef-
fect of harvesting parameters in the considered model. Assume h; = 0.48 and hy =
0.25, and the model (3) is locally asymptotically stable about the interior equilibrium point
C*(0.037733,0.0871706, 0.220599), with the remaining parameter values in (39), as shown
in the time series and phase portrait in Figure 3 The stable behavior indicates that the small
fluctuations in initial population size do not affect the population over a longer period of
time, i.e., the long-term survival of both species. When we increase the value of h; at
some critical value, hy = 0.51895, the model (3) loses its stability and undergoes Hopf bi-
furcation. Also, satisfy the Theorem 6, i.e., ni(h)na(hf) — na(hi) = 0 and ng(h}) —
(ny(hH)na(ht)) = —0.024916 # 0 which ensure the existence of Hopf bifurcation. The ex-
istence of a periodic solution in time serious and phase portrait for.the.model (3) at h; = 0.53
near C*(0.0372941,0.0873199, 0.3117236) is shown in Figure 3. For clear representation, the
one-parameter bifurcation diagram with parameters in (39), ho = 0.25, and h; € (0.45,0.55)
is plotted in the Figure 4.

It is also necessary to investigate the impact of another harvesting parameter h2. To validate
the bifurcation structure, we performed eigenvalue continuation and time-series simulations
from multiple initial conditions. The results show coexistence of a stable equilibrium and a
stable limit cycle for certain values of hg, confirming bistability. This indicates a subcritical
Hopf bifurcation followed by a fold of limit cycles. Accordingly, Figure 5 has been updated to
display both the stable equilibrium branch and the stable periodic orbit branch. For a detailed
understanding of the dynamics. We chose the parameter values in (39), hy = 0.48 and vary|
he € (0.01,0.25), and plotted the one-parameter bifurcation diagram in Figure 5. It shows
that the model (3) is locally asymptotically stable for he € (0,0.04), periodic solution for
he € (0.04,0.195), and again become locally asymptotically stable near for hy € (0.195,0.25)
near C*. It is clear that the model (3) undergoes Hopf bifurcation at two points within the
parameter range ho € (0,0.25). On further increasing the value hy in the range hy € (0.25,1),
the model (3) exhibits transcritical bifurcation behavior between the equilibrium points Co and
C*. First, the equilibrium C* is stable, whereas C5 is unstable as ho increases and crosses
the critical value ho = r1 + a9, then the equilibrium C* becomes unstable, and C's becomes
stable, which is depicted in Figure 6. Also, the model (3) satisfy the Theorems 7 and 8 af
ho = h3 = 71+ a2, which ensures the existence of transcritical bifurcation between Cy and C™*.
When ho = 71+as the model equilibrium C* becomes C', which shows that a higher harvesting
rate ho in the second species causes to die out ¢ and results in the survival of only species x and z
respectively. For a clear illustration, the dynamical changes of the model (3) with the influence

of harvesting effects, the two-parameter bifurcation diagrams are plotted in Figure 7. In Figure

7(a) the two-parameter bifurcation diagram is plotted for hs and Ay, similarly for [ and Ay in
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[Figure 8: For the set parameters ¢; = 0.47, c2 = 0.5, p1 = 0.6, p2 = 0.7, p = 0.45, ¢ = 0.55 @ = 0.3,
8 =0.5,s1 = 0.4, s2 = 0.5, a = 0.5 red curve indicates z vs. E'> and green curveindicates z vs. F;

Figure 7(b) and [ and ho in Figure 7(c). In which the green color represents the stable region, the
red color represents the unstable region, and the brown color represents the extinction region,
Furthermore, it is helpful to find extinction and survival regions of species with the choice of
harvesting parameters h, and hs. Moreover, the-nonzero bionomic equilibrium is found on the
surface encompassing the two curves, which,is illustrated in Figure 8.

Here, we solve the model (2), we obtain the optimal solutions

(0.762046195, 0.476130367,1.928739577)
with corresponding optimal efforts are Fy. = 0.572646 and E2 = 0.809736. Taking

a=15 a=01, =15 ¢=16, uvu=085 wv=2 ¢ =p=1,
=02, ¢=03, p1 =15 s1 =10, py =25, sy=10andd =5.

Then, we get the maximum value of the net revenues

(0.9)
J :/ e °12.52718923dt = 0.505437846.
0

8 Conclusion

This study examines the population model of the three species, which are intraguild prey, in-
traguild predators, and biotic resources. The process of population reduction by harvesting
takes place in the population. Changes in harvesting parameters in each population provide an|
understanding of the dynamics of harvesting in the considered model. Bifurcation and stability

analysis help us determine the Hopf-bifurcation in our model due to the change in the signs of

the associated eigenvalues of the corresponding model. Prey decline in our model is primarilyl
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influenced by predation, but because the variable Z affects both prey and predator, extinction|
arises from their coupled dynamics rather than predation alone. Thus, the mechanism of extinc-
tion depends on the parameter regime, with predation dominating in some cases and resource
effects amplifying it in others. The coexistence of prey, predator, and biotic resource can exist
only in a small parameter range, which is determined by the exact combination of prey and
predator assault rates on the resource, as well as the predator’s predation rate. We begin by
non-dimensionalizing the basic model and reducing the number of parameters. However, the
original model has been considered while dealing with the harvesting attempts of £ and Fs.
These results show that the harvest affects the survival of one or more species in the ecosys-
tem. In our model, we showed how the harvesting parameters help have a greater impact on the
survival of species by plotting various bifurcation diagrams.Also, we described the existence
of transcritical bifurcation in our considered model, which is-a-danger sign for species extinc-
tion due to over-harvesting. Therefore, we must control harvesting.activities to stop population
extinction in the ecosystem. Here, we investigated the dynamics of the bionomic equilibrium.
Finally, the optimal harvesting policy is derived using Pontryagin’s maximum principle. With
the control of harvesting efforts, 0 < E; < E™® has a definite condition, i.e., the internal
equilibrium point is constant and gives maximum profit. Predators and prey populations can
coexist, although both populations are harvested by a sustained effort. Using Pontryagin’s max-
imization policy, we found a certain‘value in the harvest effort, £; and Fs, which is related to

a fixed equilibrium point that increases the net current revenue.

In this paper, we investigated the intraguild predation model with individual harvesting
techniques and ratio-dependent functional responses. As far as future research goes, there are
several possibilities for this study. One important direction is that we can expand on the notion
of this article by putting a gestation time delay on the intraguild predator in our examined model.

'We leave it for future work.
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