| تعداد نشریات | 46 |
| تعداد شمارهها | 1,227 |
| تعداد مقالات | 10,550 |
| تعداد مشاهده مقاله | 21,028,483 |
| تعداد دریافت فایل اصل مقاله | 14,234,536 |
Efficiency Analysis of Technology-Based Firms Using the SBM-DEA Model: Evidence from Iran | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 17 آبان 1404 اصل مقاله (578.79 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.74337.1302 | ||
| نویسندگان | ||
| Zahra Mohammadhashemi* 1؛ Khatere Ghorbani-Moghadam2؛ Safora Allahy3؛ Sepehr Ghazinoory4 | ||
| 1Department of Policy Evaluation & STI Monitoring, National Research Institute for Science Policy (NRISP), Tehran, Iran. | ||
| 2Mosaheb Institute of Mathematics, Kharazmi University, Tehran, Iran. | ||
| 3Iran University of Science and Technology, Tehran, Iran. | ||
| 4School of Management and Economics, Tarbiat Modares University, Tehran, Iran. | ||
| چکیده | ||
| This study employs a two-stage analytical framework to assess efficiency, comprising a standard SBM evaluation and a novel weighted SBM model. Unlike conventional SBM-DEA applications, the proposed weighted model uses an enhanced slack-based mechanism that prioritizes strategic inputs (R&D investment, number of employees, and funding) and clearly distinguishes input redundancies (e.g., excessive R&D expenditure or staffing) from output deficiencies (e.g., weak revenue performance). This separation yields more precise and targeted diagnostic insights. Additionally, the model incorporates sector-specific efficiency differentiation, supported by ANOVA, enabling assessment of cross-firm inefficiencies and their statistical significance in terms of systemic versus sector-specific phenomena. The methodology is applied to a distinctive panel of 146 technology-based firms (TBFs) in Iranian science and technology parks from 2021–2023, a context rarely explored with DEA in emerging markets. The study combines quantitative DEA results from both models with qualitative follow-up analyses of factors such as marketing strategies, private investment initiatives, and certification achievements, producing a robust mixed-methods approach and actionable policy recommendations. A comparative analysis reveals that fully efficient firms comprise 2.7\% under the unweighted model and 3.4\% under the weighted model, indicating that weighting yields a small, non-significant change in overall efficiency. About 97.3\% of firms display efficiency gaps due to input redundancies or output shortfalls. Sectoral tests show no statistically significant inter-sector differences, pointing to systemic inefficiencies across industries. Qualitative insights identify firm-level success factors—effective marketing, certification, and investment strategies—that align with the detected inefficiency patterns. Collectively, these findings offer measurable strategies for improvement, such as reducing redundant investment and enhancing revenue-generation mechanisms, to inform evidence-based policy aimed at the commercialization and growth of TBFs in emerging markets. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Data envelopment analysis؛ Slack-based measure؛ Efficiency ranking؛ Sector-specific efficiency؛ Technology-based firms | ||
| مراجع | ||
|
[1] Amini, A., Bonyadi Naeini, A., Mohamadi, M., Ahadzadeh Namin, M. (2016). “Performance evaluation of management of technology and innovation in two stages of enablers and results using data envelopment analysis”. Journal of Technology Development Management, 4(3), 33-68, doi:https://doi:10.22104/jtdm.2017.2120.1737. [2] Banker, R.D., Charnes, A., Cooper, W.W. (1984). “Some models for estimating technical and scale inefficiencies in data envelopment analysis”. Management Science, 30(9), 1078-1092, doi: https://doi:10.1287/mnsc.30.9.1078. [3] Bogetoft, P., Otto, L. ( 2011). “Benchmarking with DEA, SFA, and R”. Springer, New York, NY. doi:https://doi.org/10.1007/978-1-4419-7961-2. [4] Charnes, A., Cooper, W.W. (1985). “Programming with linear fractional functionals”. Naval Research Logistics Quarterly, 9(3-4), 181-186, doi:https://doi.org/10.1002/nav.3800090303. [5] Charnes, A., Cooper, W.W., Rhodes, E. (1978). “Measuring the efficiency of decision-making units”. European Journal of Operational Research, 2(6), 429-444, doi:https://doi.org/10.1016/0377-2217(78)90138-8. [6] Charnes, A., Cooper, W.W., Golany, B., Seiford, L., Stutz, J. (1985). “Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions”. Journal of Econometrics, 30(1-2), 91-107, doi: https://doi.org/10.1016/0304-4076(85)90133-2. [7] Chen, G., Breedlove, J. (2020). “The effect of innovation-driven policy on innovation efficiency: Based on the listed sports firms on Chinese New Third Board”. International Journal of Sports Marketing and Sponsorship, 21(4), 735-755, doi: https://doi.org/10.1108/IJSMS-12-2019-0136. [8] Chen, H., Xu, R., Feng, Zh. (2013). “Evaluation of technological innovation efficiency in Chinese high-tech industry: Two-stage relational DEA”. Information Technology Journal, 12(15), 3169-3173, doi: https://doi.org/10.3923/itj.2013.3169.3173. [9] Chen, C.T., Chien, C.F., Lin, M.H., Wang, J.T. (2004). “Using DEA to evaluate R&D performance of the computers and peripherals firms in Taiwan”. International Journal of Business, 9(4), 347. [10] Chipman, J.S. (1957). “Three essays on the state of economic science, Tjalling C. Koopmans. New York: McGraw-Hill Book Company, Inc., 1957. Pp. xii, 231. $ 6.50”. American Journal of Agricultural Economics, 41(2), 447-449, doi:https://doi.org/10.2307/1235177. [11] Cockayne, D. (2019). “What is a startup firm? A methodological and epistemological investigation into research objects in economic geography”. Geoforum, 107, 77-87, doi:https://doi.org/10.1016/j.geoforum.2019.10.009. [12] Cook, W.D., Seiford, L.M. (2009). “Data envelopment analysis (DEA) – Thirty years on”. European Journal of Operational Research, 192(1), 1-17, doi:https://doi.org/10.1016/j.ejor.2008.01.032. [13] Cooper, W.W., Seiford, L.M., Zhu, J. (2011). “Data envelopment analysis: History, models, and interpretations”. In: Cooper, W., Seiford, L., Zhu, J. (eds) Handbook on Data Envelopment Analysis. International Series in Operations Research & Management Science, vol 164. Springer, Boston, MA, doi: https://doi.org/10.1007/978-1-4419-6151-8_1. [14] Debreu, G. (1951). “The coefficient of resource utilization”. Econometrica, 19, 273-292, doi: http://dx.doi.org/10.2307/1906814. [15] Du, J., Lin, F., Chen, J., Morris, S. C., Nie, C. (2012). “Numerical study on the influence mechanism of inlet distortion on the stall margin in a transonic axial rotor”. Journal of Thermal Science, 21(3), 209–214, doi: https://doi.org/10.1007/s11630-012-0537-2. [16] Erena, O.T., Kalko, M.M., Debele, S.A. (2021). “Technical efficiency, technological progress and productivity growth of large and medium manufacturing industries in Ethiopia: A data envelopment analysis”. Cogent Economics & Finance, 9(1), doi:https://doi.org/10.1080/23322039.2021.1997160. [17] Färe, R.G., Knox Lovell, C.A. (2005). “Measuring the technical efficiency of production”. Journal of Economic Theory, 19(1), 150-162. 16, doi:https://doi.org/10.1016/0022-0531(78)90060-1. [18] Farrell, M.J. (1957). “The measurement of productive efficiency”. Journal of the Royal Statistical Society, 120(3), 253–290, doi: https://doi.org/10.2307/2343100.Accessed31Oct.2025. [19] Fukugawa, N. (2006). “Determining factors in the innovation of small firm networks: A case of cross-industry groups in Japan”. Small Business Economics, 27, 181-193, doi:https://doi.org/10.1007/s11187-006-0010-2. [20] Grilo, A., Santos, J. (2015). “Measuring efficiency and productivity growth of new technology-based firms in business incubators: The Portuguese case study of Madan Parque”. The Scientific World Journal, doi:https://doi.org/10.1155/2015/936252. [21] Grinstein, A., Goldman, A. (2006). “Characterizing the technology firm: An exploratory study”. Research Policy, 35(1), 121-143, doi:http://dx.doi.org/10.1016/j.respol.2005.09.003. [22] Grosskopf, S. (1993). “Efficiency and Productivity”. In Fried HO and SS Schmidt (eds.) The Measurement of Productive Efficiency: Techniques and Applications, Oxford, U.K.: 160-194. [23] Johnson, A.L., McGinnis, L.F. (2008). “Outlier detection in two-stage semiparametric DEA models”. European Journal of Operational Research, 187(2), 629-635, doi:https://doi.org/10.1016/j.ejor.2007.03.041. [24] Khayatian, M., Tabatabaiyan, H., Elyasi, M. (2019). “Analysis of the factors influencing the growth and sustainability of knowledge-based firms in Iran”. Journal of Innovation and Value Creation, 3(6), 57-74, doi:http://journalie.ir/en/Article/345. [25] Kim, C., Shin, W.S. (2019). “Does information from the higher education and R&D institutes improve the innovation efficiency of logistic firms?”. The Asian Journal of Shipping and Logistics, 35(1), 70-76, doi:https://doi.org/10.1016/j.ajsl.2019.03.010. [26] Lindelof, P., Lofsten, H. (2003). “Science park location and new technology-based firms in Sweden-implications for strategy and performance”. Small Business Economics, 20(3), 245-258, doi: https://doi.org/10.1023/A:1022861823493. [27] Lu, Y.H., Shen, C.C., Ting, C.T., Wang, C.H. (2010). “Research and development in productivity measurement: An empirical investigation of the high technology industry”. African Journal of Business Management, 4(13), 2871-2884, doi:https://doi.org/10.5897/AJBM.9000491. [28] Maine, E.M., Shapiro, D.M., Vining, A.R. (2010). “The role of clustering in the growth of new technology-based firms”. Small Business Economics, 34, 127-146, doi:http://dx.doi.org/10.1007/s11187-008-9104-3. [29] Marwick, A.E. (2013). “Status update: Celebrity, publicity, and branding in the social media age”. Yale University Press, http://www.jstor.org/stable/j.ctt5vkzxr. [30] Pourmahmoud, J., Abbasi, A., Ghaffari-Hadigheh, A. (2025). “Network data envelopment analysis and uncertainty in decision-making: A three-stage model based on Liu’s uncertainty theory”. Control and Optimization in Applied Mathematics, doi:https://doi.org/10.30473/coam.2025.73893.1293. [31] Rojas, F., Huergo, E. (2016). “Characteristics of entrepreneurs and public support for NTBFs”. Small Business Economics, 47(2), 363-382, doi:https://doi.org/10.1007/s11187-016-9718-9. [32] Mohammadhashemi, Z. (2017). “The relationship among university, industry and government with emphasis on the role of intermediary institutions. Case Study: Coordination centers of Knowledge, Industry and Markets”. Rahyaft, 27(66), 75-88, doi:https://dor.isc.ac/dor/20.1001.1.10272690.1396.27.66.6.6 [33] Stemler, S. (2000). “An overview of content analysis”. Practical Assessment, Research, and Evaluation, 7(1), 17, doi:https://doi.org/10.7275/z6fm-2e34. [34] Sutopo, W., Khofiyah, N.A., Hisjam, M., Ma’aram, A. (2022). “Performance efficiency measurement model development of a technology transfer office (TTO) to accelerate technology commercialization in universities”. Applied System Innovation, 5(1), 21, doi:https://doi.org/10.3390/asi5010021. [35] Tone, K. (2001). “A slacks-based measure of efficiency in data envelopment analysis”. European Journal of Operational Research, 130(3), 498-509, doi:https://doi.org/10.1016/S0377-2217(99)00407-5. [36] Tone, K., Toloo, M., Izadikhah, M. (2020). “A modified slacks-based measure of efficiency in data envelopment analysis”. European Journal of Operational Research, 287(2), 560-571, doi: https://doi.org/10.1016/j.ejor.2020.04.019. [37] Van Elk, R., Ter Weel, B., van der Wiel, K., Wouterse, B. (2019). Estimating the returns to public RD investments: Evidence from production function models. De Economist, 167(1), 45–87. [38] Yaghoubi, M., Teymourzadeh, E., Bahadori, M., Ghardashi, F. (2017). “Conceptual model of innovation capability in industrial and academic research centers: A systematic review”. Interdisciplinary Journal of Management Studies, 10(3), 609-640, doi:https://doi.org/10.22059/ijms.2017.238379.672756. [39] Zhu, J. (2014). “Quantitative models for performance evaluation and benchmarking”. Springer Cham, Switzerland, doi:https://doi.org/10.1007/978-3-319-06647-9. | ||
|
آمار تعداد مشاهده مقاله: 4 تعداد دریافت فایل اصل مقاله: 5 |
||