| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,847 |
| تعداد مشاهده مقاله | 22,201,316 |
| تعداد دریافت فایل اصل مقاله | 14,928,185 |
Design of a Resonance Rayleigh Scattering Technique using PbS QDs-Gutathione Nanocomposite for Epinephrine drug Detection in Real samples | ||
| Iranian Journal of Analytical Chemistry | ||
| دوره 12، شماره 1 - شماره پیاپی 23، خرداد 2025، صفحه 64-74 اصل مقاله (1.2 M) | ||
| نوع مقاله: Full research article | ||
| شناسه دیجیتال (DOI): 10.30473/ijac.2025.75897.1326 | ||
| نویسندگان | ||
| Farzaneh Marahel* 1؛ Abdolmohsen Amouri1؛ Alireza Geramizadegan2؛ Mohammad Reza Asghariganjeh1 | ||
| 1Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran. | ||
| 2Department of Chemistry, Dashtestan Branch, Islamic Azad University, Dashtestan, Iran. | ||
| چکیده | ||
| In this study, a description of spectrofluorometer method for the measure of epinephrine (EP) drug in urine and blood samples using lead sulfide (PbS) quantum dots via glutathione nanocomposite as a sensor using a resonance Rayleigh scattering (RRS) technique. The sensor was characterized using FTIR, XRD, SEM, and TEM. The scattering intensity (∆IRRS) signal was detected by a fluorescence detector at λ(ex) = 325 nm. Under the optimum conditions, the calibration plot is linear in the (EP) drug concentration range of (0.050‒200.0 ng L-1). The standard deviations of (1.2 %), detection limit (LOD) of the method (0.015 ng L-1) and quantification (LOQ) of the method (0.044 ng L-1) in time 50 s, 325 nm for sensor level response PbS QDs-glutathione nanocomposite with (96 %) confidence evaluated. Moreover, a PbS QDs-glutathione nanocomposite sensor with RRS technique for the analysis of (EP) drug in urine and blood samples with high % recoveries (94.0 -99.2 %), low % RSD values (< 3 %) was used. This method offers a reliable approach for detecting various drugs in clinical and pharmaceutical settings. | ||
| کلیدواژهها | ||
| Epinephrine drug؛ Glutathione؛ PbS quantum dots؛ Sensor؛ Resonance Rayleigh Scattering | ||
| عنوان مقاله [English] | ||
| طراحی تکنیک پراکندگی رزونانس ریلی با استفاده از نقاط کوانتومی سولفید سرب با پوشش گلوتاتیون برای تشخیص داروی اپی نفرین در نمونههای حقیقی | ||
| نویسندگان [English] | ||
| فرزانه مراحل1؛ عبدالمحسن عموری1؛ علیرضا گرامی زادگان2؛ محمد رضا اصغری گنجه1 | ||
| 1گروه شیمی واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران. | ||
| 2گروه شیمی واحد دشتستان، دانشگاه آزاد اسلامی، دشتستان، ایران. | ||
| چکیده [English] | ||
| در این مطالعه، طراحی یک تکنیک پراکندگی رزونانس ریلی (RRS) با استفاده از نقاط کوانتومی سولفید سرب با پوشش گلوتاتیون به عنوان حسگر تشخیص داروی اپی نفرین در نمونههای واقعی اختصاص داده شد. تکنیک های مختلفی از جمله FTIR، XRD، SEM و TEM برای مشخص کردن سنسور استفاده شد. سیگنال شدت پراکندگی (IRRS∆) توسط یک آشکارساز فلورسانس درطول موج 325 نانومتر شناسایی شد. تحت شرایط بهینه، نمودار کالیبراسیون در محدوده غلظت داروی اپی نفرین (0/050 تا 200/0 نانوگرم در لیتر) خطی است. انحراف استاندارد نسبی (1/2± درصد)، و حد تشخیص (LOD) روش 0/015 نانوگرم در لیتر، و مقدار کمی سازی (LOQ) روش 0/044 نانوگرم در لیتر در زمان 50 ثانیه و طول موج 325 نانومتر برای پاسخ سطح سولفید سرب با پوشش گلوتاتیون با (96/0 درصد) اطمینان ارزیابی شد. علاوه بر این، از یک حسگر نقاط کوانتومی سولفید سرب با پوشش گلوتاتیون با تکنیک پراکندگی رزونانس رایلی برای آنالیز داروی اپی نفرین در نمونههای ادرار و خون با درصد بازیابی بالا (94/0 تا 99/2 درصد) و درصد RSD پایین (< 3/0 درصد) استفاده شد. این روش یک رویکرد قابل اعتماد برای تشخیص داروهای مختلف در محیطهای بالینی و دارویی ارائه میدهد. | ||
| کلیدواژهها [English] | ||
| اپی نفرین, گلوتاتیون, نقاط کوانتومی سولفید سرب, حسگر, پراکندگی رزونانس ریلی | ||
| مراجع | ||
|
[1] F.H. Cincotto, Th. C. Canevari, A.M. Campos, R. Landers, S.A.S. Machado, Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles, Analyst 139 (2014) 4634-4640. https://doi.org/10.1039/C4AN00580E
[2] G.D. Perkins, C. Ji, C.D. Deakin, T. Quinn, J.P. Nolan, C. Scomparin, S. Regan, J. Long, A. Slowther, H. Pocock, J.I.M. Black, F. Moore, R.T. Fothergill, N. Rees, L. Oshea, M. Docherty, I. Gunson, K. Han, K. Charlton, J. Finn, S. Petrou, N. Stallard, S. Gates, R. Lall, A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest, New Engl. J. Med. 379(8) (2018) 711-721. https://doi.org/10.1056/nejmoa1806842
[3] A. Ekhtesasi, M.R. Shishehbore, Sensitive Determination of Epinephrine Using Kinetic Spectrophotometric Method, Orient. J. Chem. 32(1) (2016) 467-472. https://doi.org/10.13005/ojc/320153
[4] E. Akyilmaz, E. Canbay, E. Dinçkaya, C. Güvenç, I. Yaşa, E. Bayram, Simultaneous Determination of Epinephrine and Dopamine by Using Candida tropicalis Yeast Cells Immobilized in a Carbon Paste Electrode Modified with Single Wall Carbon Nanotube, Electroanalysis 29(8) (2017) 1976-1984. https://doi.org/10.1002/elan.201700125
[5] C.N. Pecheu, V.K. Tchieda, K.Y. Tajeu, S.L.Z. Jiokeng, A. Lesch, I.K. Tonle, E. Ngameni, C. Janiak, Electrochemical Determination of Epinephrine in Pharmaceutical Preparation Using Laponite Clay-Modified Graphene Inkjet-Printed Electrode, Molecules 28 (2023) 5487. https://doi.org/10.3390/molecules28145487
[6] I.M. Apetrei, C. Apetrei, Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine, Int. J. Nanomedicine 8 (2013) 4391-4398. https://doi.org/10.2147/IJN.S52760
[7] T. Wang, X. Ma, Y. Xing, S. Sun, H. Zhang, T. Stürmer, B. Wan, X. Li, H. Tang, L. Jiao, S. Zhai, Use of Epinephrine in Patients with Drug-Induced Anaphylaxis: An Analysis of the Beijing Pharmacovigilance Database, Int. Arch. Allergy Immunol. 173 (2017) 51-60. https://doi.org/10.1159/000475498
[8] M. Hosseini, A. Rezaei, M. Soleymani, Homogeneous solvent‑based microextraction method (HSBME) using a task‑speciic ionic liquid and its application to the spectrophotometric determination of luoxetine as pharmaceutical pollutant in real water and urine samples, Chem. Pap. 78 (2024) 78195-8210. https://doi.org/10.1007/s11696-024-03660-7
[9] M. Hosseini, High-performance ionic liquid-based microextraction method (ILBME) for the trace determination of paroxetine as a pharmaceutical pollutant in environmental and biological samples, Anal. Methods 16 (2024) 8457-8470. https://doi.org/10.1039/D4AY01668H
[10] M. Hosseini, K. Gallardo, A novel system based on task-specific pyrrolinium-based ionic liquid and homogeneous in-situ solvent formation microextraction of sertraline in real water and urine samples, New J. Chem. 49 (2025) 13772-13784. https://doi.org/10.1039/D5NJ01661D
[11] S. Kongkiatpaiboon, N. Duangdee, S. Chewchinda, O. Poachanukoon, K. Amnuaypattanapon, Development and validation of stability indicating HPLC method for determination of adrenaline tartrate, J. King Saud Univ – Sci. 31(1) (2017) 48-51. https://doi.org/10.1016/j.jksus.2017.05.016
[12] J. Du, L. Shen, J. Lu, Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material, Anal. Chim. Acta 489 (2003) 183-189. https://doi.org/10.1016/S0003-2670(03)00717-7
[13] M. Mazloum-Ardakani, F. Alvansaz-Yazdi, F. Hosseini-Dokht, A. Khoshroo, Fabrication of an Electrochemical Sensor for Determination of Epinephrine Using a Glassy Carbon Electrode Modified with Catechol, Anal. Bioanal. Chem. Res. 10(4) (2023) 387-394. https://doi.org/10.22036/abcr.2023.386655.1889
[14] S.A.H. Al-Ameri, Spectrophotometric determination of adrenaline in pharmaceutical preparations, Arabian J. Chem. 181 (2016) S1000-1004. https://doi.org/10.1016/j.arabjc.2011.10.001
[15] M. Pargari, F. Marahel, B. Mombeni Goodajdar, Applying Kinetic Spectrophotometric Method and Neural Network Model for the Quantity of Epinephrine Drug by Starch-capped AgNPs Sensor in Blood and Urine Samples, J. Anal. Chem. 77(4) (2022) 482-494. https://doi.org/10.1134/S1061934822040074
[16] S. Menon, S. Jesny, U. Sivasankaran, KG. Kumar, Fluorometric determination of epinephrine: A green approach, Anal. Sci. 32 (2016) 999–1001. https://doi.org/10.2116/analsci.32.999
[17] S. Baluta, K. Malecha, A. Swist, J. Cabaj, Fluorescence Sensing Platforms for Epinephrine Detection Based on Low Temperature Cofired Ceramics, Sensors 20(5) (2020) 1429. https://doi.org/10.3390/s20051429
[18] Y. Lin, Q. Zhou, D. Tang, R. Niessner, H. Yang, D. Knopp, Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-On Photoelectrochemical Immunoassay of Mycotoxins, Anal. Chem. 88 (2016) 7858–7866. https://doi.org/10.1021/acs.analchem.6b02124
[19] Q. Xu, J. Dong, G. Yan, R. Yi, X. Yang, Synthesis of N-Doped Graphene Quantum Dots from Cellulose and Construction of a Fluorescent Probe for 6Mercaptopurin Quantitative Detection, Materials 17 (2024) 5852. https://doi.org/10.3390/ma17235852
[20] A. Ghafarloo, R.F. Sabzi, N. Samadi, H. Hamishehkar, Spectrofluorimetric Determination of Hydrochlorothiazide by a Carbon Dots-Based Probe via Inner Filtering Effect and Resonance Rayleigh Scattering, J. Braz. Chem. Soc. 33(4) (2022) 361-368. https://doi.org/10.21577/0103-5053.20210155
[21] H. Salem, F.A. Abo Elsoud, D. Heshmat, A. Magdy, Resonance Rayleigh scattering technique-using erythrosine B, as novel spectrofluorimetric method for determination of anticancer agent nilotinib: Application for capsules and human plasma, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 251 (2021) 119428. https://doi.org/10.1016/j.saa.2021.119428
[22] V. Kiran, K. Harini, A. Thirumalai, K. Girigoswami, A. Girigoswami, Nanostructured carbon dots as ratiometric fluorescent rulers for heavy metal detection, Int. J. Nano Dimens. 15(4) (2024) 152426. https://doi.org/10.57647/j.ijnd.2024.1504.26
[23] A. Amouri, F. Marahel, A. Geramizadegan, M.R. Asghariganjeh, Resonance Rayleigh Scattering and Spectrofluorimetric Sensing of 6-Mercaptopurine using PbS Quantum Dot–Glutathione Nanocomposites, J. Anal. Chem. 80(7) (2025) 1203-1211. https://doi.org/10.1134/S1061934825700509
[24] Sh. Davoudi, F. Marahel, Determination of sulfacetamide in blood and urine using PBS quantum dots sensor and artificial neural networks, J. Anal. Chem. 77(11) (2022) 1448-1457. https://doi.org/10.1134/S1061934822110041
[25] Z. Qiu, J. Shu, Y. He, Z. Lin, K. Zhang, Sh. Lv, D. Tang, CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization, Biosens. Bioelectron. 87 (2017) 18-24. https://doi.org/10.1016/j.bios.2016.08.003
[26] P. Jamalipour, N. Choobkar, M. Abrishamkar, E. Pournamdari, Designed a Fluorescent Method by Using PbS with Gelatin via Quantum Dots for the Determination of Amount Insecticide toxic Fenpyroximate in Water Samples, Iran. J. Anal. Chem. 9(2) (2022) 28-37. https://doi.org/10.30473/ijac.2022.64566.1239.
[27] E. Pournamdari, L. Niknam, Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples, J. Sulfur Chem. 45(3) (2024) 408-421. https://doi.org/10.1080/17415993.2023.2297708
[28] T. Blachowicz, A. Ehrmann, Recent Developments of Solar Cells from PbS Colloidal Quantum Dots, Appl. Sci. 10 (2020) 1743. https://doi.org/10.3390/app10051743
[29] F. Marahel, L. Niknam, Enhanced Fluorescent Sensing Probe via PbS Quantum Dots functionalized with Gelatin for Sensitive Determination of toxic Bentazon in Water Samples, Drug Chem. Toxicol. 45(6) (2022) 2545-2553. https://doi.org/10.1080/01480545.2021.1963761
[30] X. Chen, Z. Guo, P.J.H. Miao, One-pot synthesis of GSH-Capped CdTe quantum dots with excellent biocompatibility for direct cell imaging, Heliyon 4(3) (2018) e00576. https://doi.org/10.1016/j.heliyon.2018.e00576
[31] W. Metwly, E. Fadl, M. Soliman, Sh. Ebrahim, S.A. Sabra, Glutathione‑Capped ZnS Quantum Dots‑Urease Conjugate as a Highly Sensitive Urea Probe, J. Inorg. Organomet. Polym. Mater. 33 (2023) 1388-1399. https://doi.org/10.1007/s10904-023-02592-1
[32] A. Amouri, F. Marahel, A. Geramizadegan, M.R. Asghariganjeh, Design of a resonance Rayleigh scattering technique and spectrofluorimetric method using GSH-capped PbS quantum dots for sensing nortriptyline in urine and blood samples, Spectrosc. Lett. 58 (2025) 1-14. https://doi.org/10.1080/00387010.2025.2554233
[33] Sh. Bouroumand, F. Marahel, F. Khazali, Determining the Amount of Metronidazole Drug in Blood and Urine Samples with the help of PbS Sensor functionalized With Gelatin as a Fluorescence- Enhanced Probe, Iran. J. Anal. Chem. 7(2) (2020) 47-56. https://doi.org/10.30473/ijac.2021.56671.1175
[34] E. Pournamdari, L. Niknam, Resonance Rayleigh Scattering Technique-using Chitosan-capped gold Nanoparticles, approaches Spectrofluorimetric Method for Determination of Bentazone Residual in Water Samples, J. Environ. Sci. Health B. 58(10) (2023) 628-636. https://doi.org/10.1080/03601234.2023.2262348
[35] A. Hatamie, F. Marahel, A. Sharifat, Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence, Talanta 176 (2018) 518-527. https://doi.org/10.1016/j.talanta.2017.08.059
[36] P. Jamalipour, N. Choobkar, M. Abrishamkar, E. Pournamdari, Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin, J. Environ. Sci. Health B. 57(9) (2022) 720-728. https://doi.org/10.1080/03601234.2022.2103936
[37] F. Marahel, L. Niknam, E. Pournamdari, A. Geramizadegan, Application of electrochemical sensor based on nanosheets G‑C3N4/CPE by square wave anodic stripping voltammetry method to measure residual amounts of toxic bentazon in water samples, J. Iran. Chem. Soc. 19(8) (2022) 3377-3385. https://doi.org/10.1007/s13738-022-02531-w
[38] G. Cai, Z. Yu, R. Ren, D. Tang, Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS QDs/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen, ACS Sensors 3(3) (2018) 632-639. https://doi.org/10.1021/acssensors.7b00899 | ||
|
آمار تعداد مشاهده مقاله: 92 تعداد دریافت فایل اصل مقاله: 144 |
||