| تعداد نشریات | 48 |
| تعداد شمارهها | 1,236 |
| تعداد مقالات | 10,631 |
| تعداد مشاهده مقاله | 21,613,520 |
| تعداد دریافت فایل اصل مقاله | 14,548,549 |
A Dynamic Competitive Intelligence Model for Achieving Sustainable Competitive Advantage in the Steel Industry | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 آذر 1404 اصل مقاله (2.87 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.76551.1362 | ||
| نویسنده | ||
| Hajir Afzali* | ||
| Department of Management, Yong In University, Yongin, Republic of Korea | ||
| چکیده | ||
| This study develops a nonlinear dynamic modeling framework to analyze and predict performance behavior in industrial environments using competitive-intelligence-related variables. Four organizational resource components are formulated as elements of a discrete-time state vector, and their influence on system output is modeled through a nonlinear state-transition function. Empirical observations collected from a steel manufacturing company were used to identify the unknown dynamics through a feed-forward artificial neural network trained via a gradient-based optimization procedure. Reliability of the measurement instrument was verified using Cronbach’s alpha coefficients of 0.92 and 0.86 for the independent and dependent constructs, respectively. The identified model demonstrates stable convergence, with the minimum prediction error achieved near iteration 1500, and outperforms a linear baseline in mean-squared error and correlation accuracy. The proposed formulation provides a mathematically oriented approach for reconstructing performance-driven system behavior and establishes a foundation for future extensions involving adaptive estimation, robust analysis, and optimal control strategies in industrial systems. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Dynamic modeling؛ Competitive intelligence؛ Optimization؛ Artificial neural networks؛ Simulation | ||
| مراجع | ||
|
[1] Yu, C., Zhang, Z., Lin, C., Wu, Y.J. (2017). “Knowledge creation process and sustainable competitive advantage: The role of technological innovation capabilities”. Sustainability, 9(12), 2280, doi:https://doi.org/10.3390/su9122280. [2] Amit, R., Zott, C. (2001). “Value creation in E-business”. Strategic Management Journal. 22(6-7), 493-520, doi:https://doi.org/10.1002/smj.187. [3] Capatina, A., Vanderlinden, B. (2012). “Modelling the dimensions of a competitive intelligence–based corporate culture using the digital memory brain 7”. Faculty of Management, Academy of Economic Studies, Bucharest, Romania, Review of International Comparative Management, 13(3), 366-377, https://ideas.repec.org/a/rom/rmcimn/v13y2012i3p366-377.html. [4] Lewis, F.L., Sam Ge, Sh. (2005). “Neural networks in feedback control systems”. Mechanical Engineers’ Handbook: Instrumentation, Systems, Controls, and MEMS, Volume 2, Third Edition (pp. 791 - 825), doi:https://doi.org/10.1002/0471777455.ch19. [5] Gasimov, F., (2013). “Information and knowledge - strategic resource of innovative economy”. Ukrainian Journal Economist, 5, 35-38. [6] Gholami, V., Khaleghi, M.R. (2019). “comparative study of the performance of artificial neural network and multivariate regression in simulating springs discharge in the Caspian Southern Watershed, Iran”. Applied Water Science, 9(9), doi:https://doi.org/10.1007/s13201-018-0886-4. [7] Hagiu, A., Tanascovici, M. (2013). “Competitive intelligence in the knowledge-based organization”. Network Intelligence Studies, 1, 44-53. [8] Tsagkis, P., Bakogiannis, E., Nikitas, A. (2023). “Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities”. Sustainable Cities and Society, 89, 104337, doi:https://doi.org/10.1016/j.scs.2022.104337. [9] Kućmański, R. (2012). “Modern approach to organizational resources based on the example of the Elbląg furniture cluster. Equilibrium. Quarterly Journal of Economics and Economic Policy, 7(1), 61-70, doi:https://doi.org/10.12775/EQUIL.2012.005. [10] Leick, B. (2013). “Balancing firm and network-based resources to gain competitive advantage: A case study of an artisanal musical instruments cluster in Germany”. Rainer Hampp Verlag in its journal Management Revue - The international Review of Management Studies, 24(2), 77-95, doi:https://doi.org/10.5771/0935-9915-2013-2-77. [11] Matei, R. (2012). “Conceptual relationship between information and communication technologies and competitive intelligence activities”. Economia Seria Management, 15(2), 297-307. [12] Miller, L., Miller, R. (2012). “Competitive intelligence supporting team management of 2nd generation ARI”. International Journal of Innovation and Technology Management, 09, 1250006-1-1250006-26, doi:https://doi.org/10.1109/PICMET.2009.5262061. [13] Moshiri, S., Bagheri Pormehr, S., Mousavy Nik, H. (2012). “Surveying degree of fiscal dominance in Iran’s economy in a general equilibrium dynamic stochastic model”. Economic Growth and Development Research, 2(5), 90-69, doi:https://dor.isc.ac/dor/20.1001.1.22285954.1390.2.5.3.2. [14] Paicu, C.E., Hristache, D.A., Ismail, N. (2013). “The management of environmental resources and its regional implications”. Acta Universitatis Danubius. OEconomica, Danubius University of Galati, 9(4), 45-53. [15] Peltoniemi, M., Vuori, E. (2005). “Business ecosystem as the new approach to complex adaptive business environments”. In: M. Seppä, M. Hannula, A.M. Järvelin, J. Kujala, M. Ruohonen, T. Tiainen (Eds.), Frontiers of e-Business Research 2004, FeBR 2004, Conference Proceedings, Tampere, Finland, 267-281, http://www.ebrc.fi. [16] Petriªor, I., Strain, N.A. (2013). “Approaches on the competitive intelligence”. Stefan cel Mare University of Suceava, Romania, Faculty of Economics and Public Administration, The USV Annals of Economics and Public Administration, 13(1(17)), 100-109. [17] Prahalad, C.K., Hamel, G. (2006). “The core competence of the corporation”. In: Hahn, D., Taylor, B. (eds) Strategische Unternehmungsplanung — Strategische Unternehmungsführung. Springer, Berlin, Heidelberg, doi:https://doi.org/10.1007/3-540-30763-X_14. [18] Samy A.N. (2012). “Predicting learners performance using artificial neural networks in linear programming intelligent tutoring system”. International Journal of Artificial Intelligence & Applications, 3(2), 65-73, doi:https://doi.org/10.5121/ijaia.2012.3206. [19] Slimani, T. (2013). “Concepts and tools for marketing intelligence development, IGI global”. International Journal of Innovation in the Digital Economy, 4(2), 15-34, doi:https://doi.org/10.4018/jide.2013070102. | ||
|
آمار تعداد مشاهده مقاله: 8 تعداد دریافت فایل اصل مقاله: 4 |
||