- Y. Cai, and Y.M. Zhou, Reduction of aromatic nitro compounds to azoxy compounds with sodium borohydride. Adv. Mater. Res. 1033 (2014) 18-21.
- Benkhaya, S. Mrabet, A. and Elharfi, Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6 (2020) e03271.
- G. Cai, C. Empel, W.Z. Yao, R.M. Koenigs, and J. Xuan, Azoxy compounds—from synthesis to reagents for azoxy group transfer reactions. Angew. Chem. 135 (2023) e202312031.
- Tan, X, Liu, J. Su, Y. Wang, X. Gu, D. Yang, E.R. Waclawik, H. Zhu, and Z. Zheng, One-pot selective synthesis of azoxy compounds and imines via the photoredox reaction of nitroaromatic compounds and amines in water. Sci. Rep. 9 (2019) 1280.
- Sinditskii, A. Burzhava, and A. Sheremetev, Macrocyclic tetra (azo-) and tetra (azoxyfurazan) s: Comparative study of decomposition and combustion with linear analogs. Energ. Mater. Front. 2 (2021) 87-95.
- Diab, A. El-Bindary, A. El-Sonbati, and O. Salem, Supramolecular structure and substituents effect on the spectral studies of oxovanadium (IV) azodyes complexes. J. Mol. Struct. 1018 (2012) 176-184.
- T. Newbold, Oxidation and synthetic uses of hydrazo, azo and azoxy compounds. Hydrazo, 1 (1975) 541-597.
- Patel, and T. Rosenau T, Synthesis and analytical characterization of all N–N-coupled, dimeric oxidation products of α-tocopheramine: hydrazo-, azo-, and azoxy-tocopherol. Monatsh. Chem. 152 (2021) 1231-1239.
- Shukla, R.K. Singha, T. Sasaki, S. Adak, S. Bhandari, V. Prasad, A. Bordoloi, and R. Bal, Room temperature selective reduction of nitroarenes to azoxy compounds over Ni-TiO2 catalyst. Mol. Catal. 490 (2020)110943.
- Ferlin, M. Cappelletti, R. Vivani, M. Pica, O. Piermatti, and L. Vaccaro, Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chem. 21 (2019) 614-626.
- Chong, C. Liu, Y. Huang, C. Huang, and B. Zhang, Potential-tuned selective electrosynthesis of azoxy-, azo-and amino-aromatics over a CoP nanosheet cathode. Natl. Sci. Rev. 7 (2020) 285-295. ‘
- Yan, X. Xie, Q. Song, F. Ma, X. Sui, Z. Huo, and M. Ma, Tandem selective reduction of nitroarenes catalyzed by palladium nanoclusters. Green Chem. 22 (2020) 1301-1307.
- Dai, Q. Wei, T. Duong, and Y. Sun, Selective transfer coupling of nitrobenzene to azoxybenzene on rh nanoparticle catalyst promoted by photoexcited hot electrons. Chem. Nano Mat. 5 (2019) 1000-1007.
- N. Pahalagedara, L.R. Pahalagedara, J. He, R. Miao, B. Gottlieb, D. Rathnayake, and S.L. Suib, Room temperature selective reduction of nitrobenzene to azoxybenzene over magnetically separable urchin-like Ni/Graphene nanocomposites. J. Catal. 336 (2016) 41-48.
- Singh, D. Mandelli, and P.P. Pescarmona, Efficient and selective oxidation of aromatic amines to azoxy derivatives over aluminium and gallium oxide catalysts with nanorod morphology. Chem. Cat. Chem. 12 (2020) 593-601.
- Yu, W. Ding, P. Ge, S. Wang, and J. Wang, Oxidative coupling of aromatic amines and nitrosoarenes: Iodine‐mediated formation of unsymmetrical aromatic azoxy compounds. Adv. Synth. Catal. 360 (2016) 3150-3156.
- Rezaeifard, M. Jafarpour, S. Rayati, and R. Shariati, The catalytic performance of Mn-tetraarylporphyrins in the highly selective oxidation of primary aromatic amines to azo compounds by Bu4NHSO5. Dyes Pigm. 80 (2009) 80-85.
- B. Waghmode, S.M. Sabne, and S. Sivasanker, Liquid phase oxidation of amines to azoxy compounds over ETS-10 molecular sieves. Green Chem. 3 (2001) 285-288.
- Liu, S. Ye, H.Q. Li, Y.M. Liu, Y. Cao, and K.N. Fan KN, Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catal Sci. Technol. 3 (2013) 3200-3206.
- Belattar, S. Benayache, and F. Benayache, Diphenyl diselenide–catalyzed reductive coupling of nitroarenes to aromatic azo and azoxy compounds with sodium borohydride in alkaline ethanol. Curr. Org. Synth. 15 (2018) 1182-1190.
- L. Di Gioia, A. Leggio, I.F. Guarino, V. Leotta, E. Romio, and A. Liguori, A simple synthesis of anilines by LiAlH4/TiCl4 reduction of aromatic nitro compounds. Tetrahedron lett. 56 (2015) 5341-5344.
- Welton, Solvents and sustainable chemistry. Proc. R. Soc. A 471 (2015) 20150502.
- Hussain, I. Ghafari, S. Sattar, M. Muneeb, A. Hasan, and B. Deepanraj, Eco-friendly catalysts revolutionizing energy and environmental applications: An overview. Top. Catal. 68 (2024) 487-509.
- Jiang, J. Li, K.J. Shah, and Z. You Z, Perspective Chapter: Implementing green chemistry principles for pollution control to achieve environmental sustainability–A Review. Green Chemi. Environ. Sustain. Prev. Assur. Sustain. Approach (2023).
- Chen, Y. Zhou, H. Fang, X. Peng, and L. Jiang, Progress and challenges in energy storage and utilization via ammonia. Surf. Sci. Technol. 1 (2023) 13.
- Miceli, P. Frontera, A. Macario, and A. Malara, Recovery/reuse of heterogeneous supported spent catalysts. Catalysts 11 (2021) 591.
- Panahimehr, S. Asghari, M. Hosseini, A. Mojaddami, Pd/ZnMn₂O₄/chitosan nanobiocatalyst: A sustainable solution for sunlight-enhanced photocatalytic degradation of Congo red dye. J. Mol. Struct. 1347 (2025) 143339.
- M. Sadughi, M. Hosseini, and Karem Gallardo, Next-generation nanophotocatalyst for ultra-efficient and sustainable azithromycin decontamination: A breakthrough strategy for visible-light-driven pharmaceutical waste treatment. Top. Catal. (2025).
- Panahimehr, M. Hosseini, A. Mojaddami, and S. Karamipour, Eco-friendly synthesis of magnetic Pd/NiFe2O4/chitosan nanobiocatalyst for enhanced degradation of Congo red dye under sunlight irradiation. Results Chem. 15 (2025) 102300.
- Hosseini, Visible-light-assisted decontamination of sertraline in water using a Co3O4/g-C3N4 nanocomposite photocatalyst. Environ. Sci. Pollut. Res. 32 (2025) 20441-20460.
- Hosseini, M. Panahimehr, and S.M. Khoshfetrat, Solar-driven clopidogrel degradation with europium-enhanced ZnO nanocatalyst. Int. J. Environ. Sci. Technol. 22 (2025) 9915-9932.
- P. Zhang, X.Y. Wang, K. Yuan, W. Zhu, T. Zhang, Y.H. Wang, J. Ke, X.Y. Zheng, C.H. Yan, and Y.W. Zhang, Free-standing iridium and rhodium-based hierarchically-coiled ultrathin nanosheets for highly selective reduction of nitrobenzene to azoxybenzene under ambient conditions. Nanoscale 8 (2016) 15744-15752.
- Chen, Y. Qiu, X. Wu, Y. Ni, L. Shen, J. Wu, and S. Jiang, Highly selective reduction of nitrobenzenes to azoxybenzenes with a copper catalyst. Tetrahedron Lett. 59 (2018)1382-1384.
- Wang, X. Yu, C. Shi, D. Lin, J. Li, H. Jin, X. Chen, and S. Wang, Iron and nitrogen Co‐doped mesoporous carbon‐based heterogeneous catalysts for selective reduction of nitroarenes. Adv. Synth. Catal. 361 (2019) 3525-3531.
- Hou, Y. Fujiwara, and H. Taniguchi, Lanthanides in organic synthesis. Samarium metal promoted selective formation of azoxy compounds. J. Org. Chem. 53 (1988) 3118-3120.
- S. Silvester, A.J. Wain, L. Aldous, C. Hardacre, and R.G. Compton, Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid [C4dmim][(NTf)2]. J. Electroanal. Chem. 596 (2006) 131-140.
- Wirtanen, E. Rodrigo, and S.R. Waldvogel, Recent advances in the electrochemical reduction of substrates involving N−O bonds. Adv. Synth. Catal. 362 (2020) 2088-2101.
- T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi, and Q.M.R. Haq, Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16 (2015) 29592-29630.
- Schotten, T.P. Nichollas, R.A. Bourne, N. Kapur, B.N. Nguyen, and C.E. Willans, Making electrochemistry easily accessible to the synthetic chemist. Green Chem. 22 (2020) 3358-3375.
- Webling, and H.J. Schafer, Cathodic hydrodimerization of nitroolefins. Beilstein J. Org. Chem. 11 (2015) 1163-1174.
- H. Jiang, B.L. Wu, and C.S. Cha, Electrosynthesis of p-methoxybenzaldehyde on graphite/Nafion membrane composite electrodes. Electrochim. Acta 43 (1998) 2549-2552.
- I. Kaya, A. Cetinkaya, and S.A. Ozkan, Green analytical chemistry approaches on environmental analysis. Trends Environ. Anal. Chem. 33 (2022) e00157.
- Behera, and A. Mishra, Green chemistry and catalysis: Current challenges and future perspectives. Encyclopedia of green materials. Springer, Singapore (2023).
- Ratti, Industrial applications of green chemistry: Status, Challenges and Prospects. SN Appl. Sci. 2 (2020) 263.
- S. Alvarez, M.A. Llongo, A. RodrigUuez, F.J. Deive, The role of deep eutectic solvents in catalysis. A vision on their contribution to homogeneous, heterogeneous and electrocatalytic processes. J. Ind. Eng. Chem. 132 (2024) 36-49.
- Khandelwal, Y.K. Tailor, and M. Kumar, Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq. 215 (2016) 345-386.
- Svigelj, N. Dossi, C. Grazioli, and R. Toniolo, Deep eutectic solvents (DESs) and their application in biosensor development. Sensors 21 (2021) 4263.
- E. Hooshmand, S. Kumar, I. Bahadur, T. Singh, and R.S. Varma, Deep eutectic solvents as reusable catalysts and promoter for the greener syntheses of small molecules: Recent advances. J. Mol. Liq. 371 (2023) 121013.
- E. Ünlu, A. Arikaya, and S Takac, Use of deep eutectic solvents as catalyst: A mini-review. Green Process Synth. 8 (2019) 355-372.
- P. Ijardar, V. Singh, and R.L. Gardas, Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules 27 (2022) 1368.
- El-Baraka, G. Hamdoun, N. El-Brahmi, and S. El-Kazzouli, Unlocking the potential of deep eutectic solvents for C-H activation and cross-coupling reactions: A review. Molecules 28 (2023) 4651.
- Hosseini, Application of a new synthesized ionic liquid based on pyrrolidinium for microextraction of trace amounts of Cr (VI) ions in real water and wastewater samples. J. Water Chem. Technol. 45 (2023) 256-269.
- Hosseini, S.M. Khoshfetrat, M. Panahimehr, and A. Rezaei, ISFME extraction of As species from some real water samples using an imidazolium-based task-specific ionic liquid (TSIL): Synthesis and characterization. Sep. Sci. Technol. 59 (2024) 580-591.
- Hosseini, and K. Gallardo, A novel system based on a task-specific pyrrolinium-based ionic liquid and homogeneous in situ solvent formation microextraction for the determination of sertraline in real water and urine samples. New J. Chem. 49 (2025) 13772.
- K.U. Ling, and K. Hadinoto, Deep eutectic solvent as green solvent in extraction of biological macromolecules: A review. Int. J. Mol. Sci. 23 (2022) 3381.
- L. Smith, A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114 (2014)11060-11082.
- Prabhune, and R. Dey, Green and sustainable solvents of the future: Deep eutectic solvents. J. Mol. Liq. 379: (2023) 121676.
- Wang, S. Zhang, Z. Ma, and L. Yan, Deep eutectic solvents eutectogels: progress and challenges. Green Chem. Eng. 2 (2021) 359-367.
- S. Chalaki, N. Azizi, Z. Mirjafary, and H. Saeidian, Green and rapid oxidation of aldehydes using a catalyticapplications of deep uutectic solvent. J. Saudi. Chem. Soc. 28 (2024) 101915.
- Mandal, R. Narvariya, S.L. Sunar, I. Paul, A. Jain, and T.K. Panda, Synthesis of α-aminophosphorous derivatives using a deep eutectic solvent (DES) in a dual role. Green Chem. 25 (2023) 8266-8272.
- Liu, P. Concepcion, and A. Corma, Modulating the catalytic behavior of non-noble metal nanoparticles by inter-particle interaction for chemoselective hydrogenation of nitroarenes into corresponding azoxy or azo compounds. J. Catal. 369 (2019) 312-323.
- Srilakshmi, H. Vijay-Kumar, K. Praveena, C. Shivakumara, and M. Muralidhar Nayyak, A highly efficient iron doped BaTiO3 nanocatalyst for the catalytic reduction of nitrobenzene to azoxybenzene. RSC Adv. 4 (2014) 18881-18884.
- Zheng, J. Zhao, H. Liu, J. Liu, A. Bo, and H. Zhu, Painting anatase (TiO2) nanocrystals on long nanofibers to prepare photocatalysts with large active surface for dye degradation and prganic synthesis. Chem. Cat. Chem. 5 (2013) 2382-2388.
|