| تعداد نشریات | 48 |
| تعداد شمارهها | 1,240 |
| تعداد مقالات | 10,659 |
| تعداد مشاهده مقاله | 21,761,372 |
| تعداد دریافت فایل اصل مقاله | 14,651,529 |
New Two-Parameter Weibull–Lindley Distribution: Mathematical Properties, Simulation, and Applications | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 05 دی 1404 اصل مقاله (435.11 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.75181.1321 | ||
| نویسندگان | ||
| Mohamed Kouadria* 1؛ Halim Zeghdoudi1؛ Mohammed El-Arbi Khalfallah2 | ||
| 1LaPS Laboratory, Department of Mathematics, Badji Mokhtar–Annaba University, Box 12, Annaba 23000, Algeria. | ||
| 2LAM2SIN Laboratory, Department of Mathematics, Badji Mokhtar–Annaba University, Box 12, Annaba 23000, Algeria. | ||
| چکیده | ||
| This study proposes the New Two-Parameter Weibull–Lindley Distribution (NTPWLD), a flexible lifetime model generated through a transformation of a one-parameter baseline survival function. Owing to its general structure, the NTPWLD accommodates diverse hazard rate shapes, including increasing, decreasing, and bathtub forms, and captures both light- and heavy-tailed behaviors relevant to survival analysis, engineering reliability, and biomedical applications. The work provides a full mathematical treatment of the distribution, deriving closed-form expressions for its density, distribution, survival, hazard, and quantile functions, along with ordinary and incomplete moments, the moment generating function, mean deviations, and Rényi entropy. Several reliability measures, such as mean residual life and stress–strength reliability, are also obtained. Parameter estimation is examined under various inferential approaches, with particular focus on maximum likelihood estimation. A Monte Carlo simulation study shows that the maximum likelihood estimator performs well across settings, displaying low bias, stability, and consistency. To incorporate uncertainty in lifetime data, fuzzy reliability measures are constructed using Zadeh’s extension principle and α-cut techniques. Applications to two real datasets demonstrate that the NTPWLD provides superior goodness-of-fit compared with several competing models based on AIC, BIC, AICC, and −2 log L, highlighting its practical value in both precise and fuzzy reliability environments. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Weibull–Lindley distribution؛ Reliability analysis؛ Parameter estimation؛ Simulation | ||
| مراجع | ||
|
[1] Ahsan-ul-Haq, M., Choudhary, S.M., Al-Marshadi, A.H., Aslam, M. (2022). “A new generalization of Lindley distribution for modeling of wind speed data”. Energy Reports, 8, 1–11, doi:https://doi.org/10.1016/j.egyr.2021.11.246. [2] Algarni, A. (2021). “On a new generalized Lindley distribution: Properties, estimation and applications”. PLOS ONE, 16(2), 1–20, doi:https://doi.org/10.1371/journal.pone.0244328. [3] Alotaibi, R., Rezk, H., Elshahhat, A. (2024). “Analysis of generalized type-II progressively hybrid Lindley-exponential data and its modeling in physics, engineering, and management”. AIP Advances, 14(4), 045213, doi:https://doi.org/10.1063/5.0197082. [4] Ahmad, A., Bhat, A. A., Ahmad, S.P., Jan, R. (2025). “The modified Lindley distribution through convex combination with applications in engineering”. Annals of Data Science, 12(5), 1463-1478, doi:https://doi.org/10.1007/s40745-024-00569-6. [5] Alzaatreh, A., Lee, C., Famoye, F. (2013). “A new method for generating families of continuous distributions”. Metron, 71(1), 63-79, doi:https://doi.org/10.1007/s40300-013-0007-y. [6] Basalamah, D., Alruwaili, B. (2023). “The weighted Lindley exponential distribution and its related properties”. AIMS Mathematics, 8(10), 24984–24998, doi:https://doi.org/10.3934/math.20231275. [7] Benatmane, C., Zeghdoudi, H., Ezzebsa, A., Bouchahed, L. (2021). “Note on quasi Lindley distribution: Some remarks and corrections”. Asian Journal of Probability and Statistics, 15(4), 324-329, doi:https://doi.org/10.9734/ajpas/2021/v15i430383. [8] Bousseba, F.Z., Zeghdoudi, H., Sapkota, L.P., Tashkandy, Y.A., Bakr, M.E., Kumar, A., Gemeay, A.M. (2024). “Novel two-parameter quadratic exponential distribution: Properties, simulation, and applications”. Heliyon, 10(19), doi:https://doi.org/10.1016/j.heliyon.2024.e38201. [9] Dutta, S., Ng, H.K.T., Kayal, S. (2023). “Inference for a general family of inverted exponentiated distributions under unified hybrid censoring with partially observed competing risks data”. Journal of Computational and Applied Mathematics, 422, 114934, doi:https://doi.org/10.1016/j.cam.2022.114934. [10] Elgarhy, M., Hassan, A. S., Alsadat, N., Balogun, O.S., Shawki. A.W., Ragab, I.E. (2025). “A heavy tailed model based on power XLindley distribution with actuarial data applications”. Computer Modeling in Engineering & Sciences, 142(3), 2547–2583, doi:https://doi.org/10.32604/cmes.2025.058362. [11] Gemeay, A.M., Ezzebsa, A., Zeghdoudi, H., Tanış, C., Tashkandy, Y.A., Bakr, M.E., Kumar, A. (2024). “The power new XLindley distribution: Statistical inference, fuzzy reliability, and applications”. Heliyon, 10(17), e36594, doi:https://doi.org/10.1016/j.heliyon.2024.e36594. [12] Ghitany, M.E., Atieh, B., Nadarajah, S. (2008). “Lindley distribution and its application”. Mathematics and computers in simulation, 78(4), 493-506, doi:https://doi.org/10.1016/j.matcom.2007.06.007. [13] Izomo, E.J., Edokpa, I.W., Ogbeide, E.M., Ikpotokin, O. (2025). “A hybrid distribution of Weibull, exponential and gamma distribution (WEGD) with application to real life data”. Innovative Journal of Science, 8(8), 31–49. [14] King, F.J., Ryan, J.J. (1976). “Collaborative study of the determination of the amount of shrimp in shrimp cocktail”. Journal of the Association of Official Analytical Chemists, 59(3), 644-649, doi:https://doi.org/10.1093/jaoac/59.3.644. [15] Lindley, D.V. (1958). “Fiducial distributions and Bayes’ theorem”. Journal of the Royal Statistical Society. Series B (Methodological), 102-107, doi:https://doi.org/10.1111/j.2517-6161.1958.tb00278.x. [16] Messaadia, H., Zeghdoudi, H. (2016). “Around gamma Lindley distribution”. Journal of Modern Applied Statistical Methods, 16(2), 439-442, doi:https://doi.org/10.22237/jmasm/1509495780. [17] Muhammad, M., Xiao, J., Abba, B., Muhammad, I., Ghodhbani, R. (2025). “A new hybrid class of distributions: Model characteristics and stress-strength reliability studies”. Axioms, 14(3), 219, doi:https://doi.org/10.3390/axioms14030219. [18] Nassr, S.G., Taher, T.S., Alballa, T., Elharoun, N.M. (2025). “Reliability analysis of the Lindley distribution via unified hybrid censoring with applications in medical survival and biological lifetime data”. AIMS Mathematics, 10(6), 14943–14974, doi:https://doi.org/10.3934/math.2025670. [19] Nedjar, S., Zeghdoudi, H. (2016). “On gamma Lindley distribution: Properties and simulations”. Journal of Computational and Applied Mathematics, 298, 167-174, doi:https://doi.org/10.1016/j.cam.2015.11.047. [20] Njuki, J., Avallone, R. (2025). “Energy statistic-based goodness-of-fit test for the Lindley distribution with application to lifetime data”, Stats, 8(4), 87, doi:https://doi.org/10.3390/stats8040087. [21] Noori, N. A., Khaleel, M.A. (2024). “Estimation and some statistical properties of the hybrid Weibull inverse Burr type X distribution with application to cancer patient data”. Iraqi Statisticians Journal, 1(2), 8–29, doi:https://doi.org/10.62933/87vx5q14. [22] Pramanik, S. (2022). “A new two-parameter odds generalized Lindley-exponential model”. In S. Banerjee & A. Saha (Eds.), Nonlinear Dynamics and Applications, 977–986, Springer, Cham, doi:https://doi.org/10.1007/978-3-030-99792-283. [23] Qayoom, D., Rather, A.A., Alsadat, N., Hussam, E., Gemeay, A.M. (2024). “A new class of Lindley distribution: System reliability, simulation and applications”. Heliyon, 10(19), e38335, doi:https://doi.org/10.1016/j.heliyon.2024.e38335. [25] Shanker, R., Sharma, S., Shanker, R. (2013). “A two-parameter Lindley distribution for modeling waiting and survival times data”. Applied Mathematics, 4(2), 363-368, doi:https://doi.org/10.4236/am.2013.42056. [26] “Statistical Abstract of the United States: 1937, Fifty-Ninth Number”. US Government Printing Office. https://fraser.stlouisfed.org/title/statistical-abstract-united-states-66?browse=1870s. [27] Staudte, R.G., Sheather, S.J. (2011). “Robust estimation and testing”. John Wiley & Sons, 9781118165492. https://books.google.co.in/books?id=9ut_NMzC1l4C. [28] Zadeh, L.A. (1965). “Fuzzy sets”. Information and Control, 8(3), 338-353, doi:http://dx.doi.org/10.1016/ S0019-9958(65)90241-X. | ||
|
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 1 |
||