| تعداد نشریات | 48 |
| تعداد شمارهها | 1,242 |
| تعداد مقالات | 10,691 |
| تعداد مشاهده مقاله | 21,887,364 |
| تعداد دریافت فایل اصل مقاله | 14,710,422 |
برنامهریزی تولید بهینه برق در ایران با هدف دستیابی به اهداف سند برنامه هفتم توسعه و قانون جهش تولید دانشبنیان | ||
| فصلنامه علمی پژوهش های اقتصاد صنعتی | ||
| دوره 9، شماره 32، تیر 1404، صفحه 88-114 اصل مقاله (1.51 M) | ||
| نوع مقاله: کاربردی | ||
| شناسه دیجیتال (DOI): 10.30473/jier.2026.75617.1511 | ||
| نویسندگان | ||
| محمد صیادی* 1؛ حسین حافظی2؛ محمد جعفری3؛ حبیب سهیلی احمدی4 | ||
| 1دانشیار اقتصاد، دانشکده اقتصاد، دانشگاه خوارزمی، تهران، ایران. | ||
| 2دانشجوی دکتری اقتصاد منابع طبیعی، دانشکده اقتصاد، دانشگاه خوارزمی، تهران، ایران. | ||
| 3دانشیار پژوهشگاه ملی اقیانوس شناسی و علوم جوی، تهران، ایران | ||
| 4استادیار دانشکده اقتصاد، دانشگاه خوارزمی، تهران، ایران | ||
| چکیده | ||
| مطالعه حاضر با هدف بررسی امکان تحقق اهداف این سند برنامه و همچنین قانون جهش تولید دانشبنیان به برنامهریزی بخش نیروگاهی کشور با استفاده از مدل MESSAGE پرداخته است. یافتهها نشان میدهد که با تحقق اهداف سند و قانون جهش تولید، کل ظرفیت نصب شده در سال انتهایی مطالعه، معادل 112،050 مگاوات میباشد که از این میزان سهم تکنولوژیهای تجدیدپذیر بیش از 19 هزار مگاوات است. به عبارتی سهم انرژیهای تجدیدپذیر در سبد عرضه برق کشور از 5/0 درصد در سال پایه به بیش از 17 درصد در سال پایانی میرسد. یافتههای حاصل از مدل پیرامون سبد بهینه تولید برق ایران در افق سند برنامه هفتم توسعه نشان میدهد کل تولید برق ایران در بازه زمانی 2024، 2026 و 2028 به ترتیب معادل 495 تراوات ساعت، 498 تراوات ساعت و 543 تراوات ساعت خواهد بود؛ که از این میزان سهم انرژیهای تجدیدپذیر در سبد عرضه برق کشور 18 درصد میباشد. دیگر یافتههای حاصل از مطالعه نشان میدهد که سهم تکنولوژیهای فسیلی از 89 درصد در سال 2024، به حدود 76 درصد در سال 2028 رسیده است. همچنین نتایج این مطالعه نشان میدهد که مصرف سوختهای فسیلی در بخش نیروگاهی ایران به ترتیب در سالهای 2024، 2026 و 2028 معادل 3،744 پتا ژول، 3،441 و 3،472 پتا ژول میباشد. از طرفی مطابق همین روند مصرف میزان انتشار کربن نیز در بازه زمانی مذکور به ترتیب معادل 210، 193 و 195 گرم کربن به ازای یک پتا ژول مصرف سوخت فسیلی است. | ||
| کلیدواژهها | ||
| مدل MESSAGE؛ انرژی تجدیدپذیر؛ تولید برق؛ برنامه هفتم توسعه؛ قانون جهش تولید دانشبنیان | ||
| عنوان مقاله [English] | ||
| Optimal Electricity Generation Planning in Iran Aimed at Achieving the Objectives of the Seventh Development Plan and the Knowledge-Based Production Leap Act | ||
| نویسندگان [English] | ||
| mohammad Sayadi1؛ Hossein Hafezi2؛ Mohammad Jafari3؛ Habib Soheyli Ahmadi4 | ||
| 1Associate Professor of Economics, Faculty of Economics, Kharazmi University, Tehran, Iran. | ||
| 2PhD Student of Natural Resource Economics, Faculty of Economics, Kharazmi University, Tehran, Iran. | ||
| 3Associate Professor, National Institute of Oceanography and Atmospheric Science, Tehran, Iran | ||
| 4Assistant Professor, Faculty of Economics, Kharazmi University, Tehran, Iran | ||
| چکیده [English] | ||
| The present study aims to examine the feasibility of achieving the objectives set forth in these policy frameworks by applying the MESSAGE model for electricity generation planning in Iran. The findings indicate that if the targets of the Plan and the Act are realized, the total installed capacity by the final year of the study will reach 112,050 MW, of which more than 19,000 MW will come from renewable technologies. In other words, the share of renewables in the country’s electricity supply mix will increase from 0.5% in the base year to more than 17% by the end of the study period. Moreover, the results concerning Iran’s optimal electricity generation mix within the time horizon of the Seventh Development Plan reveal that total electricity generation in 2024, 2026, and 2028 will amount to 495 TWh, 498 TWh, and 543 TWh, respectively, with renewables contributing around 18% to the supply mix. Additional findings demonstrate that the share of fossil-based technologies will decline from 89% in 2024 to approximately 76% in 2028. The study also shows that fossil fuel consumption in Iran’s power sector will amount to 3,744 PJ, 3,441 PJ, and 3,472 PJ in 2024, 2026, and 2028, respectively. Correspondingly, carbon emissions will follow a similar trend, standing at 210, 193, and 195 grams of carbon per petajoule of fossil fuel consumption over the same period. | ||
| کلیدواژهها [English] | ||
| MESSAGE model, Renewable energy, Electricity generation, Seventh Development Plan, Knowledge-Based Production Leap Act | ||
| مراجع | ||
|
Aboulghasemi, M., Yousefi, H., & Mousavi Rineh, S. M. (2019). Carbon footprint and its calculation methods with an emphasis on electricity generation from fossil and renewable sources. Renewable and New Energy, 6(2), 31–41. [In Persian] AEMO. 2023 Wholesale Electricity Market Electricity Statement of Opportunities (WEM ESOO). Australian Energy Market Operator; 2023.https://aemo.com.au/ /media/ files/electricity/wem/planning _and _ forecasting/esoo/2023/ 2023-wholesale-electricity-market-electricity statement-of-opportunities-wem-e soo.pdf?la=en. [Accessed 3 February 2025]. 73. Ahmadi, S., Nejadaini, H., Asvad, M., & Abdous, M. (2024). Reducing the share of electricity generation from fossil fuels by substituting renewable energy in high-precipitation regions. Sustainable Energy Systems Quarterly, 2(3), 299–312. [In Persian] Akadiri, S. S., & Adebayo, T. S. (2022). RETRACTED ARTICLE: Asymmetric nexus among financial globalization, non-renewable energy, renewable energy use, economic growth, and carbon emissions: impact on environmental sustainability targets in India. Environmental Science and Pollution Research, 29(11), 16311-16323. Akpahou, R., Mensah, L. D., Quansah, D. A., & Kemausuor, F. (2024). Long-term energy demand modeling and optimal evaluation of solutions to renewable energy deployment barriers in Benin: A LEAP-MCDM approach. Energy Reports, 12, 1888–1904, 2352-4847 https://doi.org/10.1016/j.egyr.2024.07.055. Aryanpur, V., Fattahi, M., Mamipour, S., Ghahremani, M., Gallachóir, B. Ó., Bazilian, M. D., & Glynn, J. (2022a). How energy subsidy reform can drive the Iranian power sector towards a low-carbon future. Energy Policy, 169, 113190. Aryanpur, V., Ghahremani, M., Mamipour, S., Fattahi, M., Gallachóir, B. Ó., Bazilian, M. D., & Glynn, J. (2022b). Ex-post analysis of energy subsidy removal through integrated energy systems modelling. Renewable and Sustainable Energy Reviews, 158, 112116. Ashena, M., & Hosseinabadi, S. (2020). Assessment of factors affecting changes in carbon dioxide emissions in Iran with emphasis on the role of urbanization: Decomposition analysis approach. Geography and Environmental Hazards Quarterly, (34), 145–163. [In Persian] Calikoglu, U., & Aydinalp Koksal, M. (2023). A pathway to achieve the net zero emissions target for the public electricity and heat production sector: A case study for Türkiye. Energy Policy, 179, Article 113653. https://doi.org/10.1016/j.enpol.2023.113653. Dehghani, A., Ghaed, E., & Ahmadi Shadmehri, M. T. (2021). An investigation of the impact of different types of renewable energy sources on electricity generation in Iran. Renewable and New Energy, 8(1), 41–47. [In Persian] De Lucena, A. F. P., Schaeffer, R., & Szklo, A. S. (2010). Least-cost adaptation options for global climate change impacts on the Brazilian electric power system. Global Environmental Change, 20(2), 342-350. Ember (2024); Energy Institute - Statistical Review of World Energy (2024) – with major processing by Our World in Data. “Total electricity generation – Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved March 11, 2025 from https://ourworldindata.org/grapher/electricity-generation. Fernandez, M. I., Go, Y. I., Früh, W. G., & Wong, D. M. (2025). Projection of electricity generation profiles and carbon emissions towards 2050: A Malaysia context. Energy for Sustainable Development, 85, 101681. Ghanbarzadeh, T., Habibi, D., & Aziz, A. (2025). Addressing reliability challenges in generation capacity planning under high penetration of renewable energy resources and storage solutions: A review. Renewable and Sustainable Energy Reviews, 212, 115461. Habiba, U. M. M. E., Xinbang, C., & Anwar, A. (2022). Do green technology innovations, financial development, and renewable energy use help to curb carbon emissions?. Renewable Energy, 193, 1082-1093. Hafezi, H., & Mamipour, S. (2022). The Long-term Electricity Planning in Iran under the Paris Agreement. Journal of Economic Modeling Research, 13(49), 153-201. Hainoun, A., Aldin, M. S., & Almoustafa, S. (2010). Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model. Energy policy, 38(4), 1701-1714. Handayani, K., Anugrah, P., Goembira, F., Overland, I., Suryadi, B., & Swandaru, A. (2022). Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050. Applied Energy, 311(118580), 0306–2619. https://doi.org/10.1016/j. apenergy.2022.118580 He, Y., Li, X., Huang, P., & Wang, J. (2022). Exploring the road toward environmental sustainability: natural resources, renewable energy consumption, economic growth, and greenhouse gas emissions. Sustainability, 14(3), 1579. Hoog, D. T., & Hobbs, B. F. (1993). ‘An integrated resource planning model considering customer value, emissions, and regional economic impacts’, Energy, 18(11), 1153-1160IEA. Net zero by 2050. Psrid. IEA; 2021. https://www.iea.org/reports/net-zeroby-2050Licence:CCBY4.0. 2 July 24. IAEA, 2007. MESSAGE user manual. IEA, Empowering Cities for a Net Zero Future, IEA, Paris, (2021). https://www.iea. org/reports/empowering-cities-for-a-net-zero-future, Licence: CC BY 4.0. IEA. Renewables 2023. Paris: IEA; 2024. Licence: CC BY 4.0, https://www.iea. org/reports/renewables-2023. 2 July 4. IEA. World energy outlook 2023. Paris: IEA; 2023. Licence: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A), https://www.iea.org/reports/world-energy-outlook- 2023. 2 July 4. IRENA. World energy transitions outlook 2023. IRENA; 2023. https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2023. 2 July 4. Jangavar, H., Nourollahi, Y., & Yousefi, H. (2019). Feasibility study of achieving greenhouse gas emission reduction targets through electricity generation from renewable energy sources in Iran. Renewable and New Energy, 6(2), 62–70. [In Persian] Kanté, M., Deng, S., Li, Y., & Coulibaly, S. (2023). Long-term optimization of hydro & solar power electricity generation in the Taoussa area of Mali using the MESSAGE model. Energy Reports, 9, 252-265. Khan, K. A., Hamid, A., Sharif, A., Syed, Q. R., & Anwar, A. (2025). Impact of adaptation technologies and green energy on environmental quality: Evidence from G8 economies. Gondwana Research, 139, 230-242. Kichonge, B., John, G. R., & Mkilaha, I. S. (2015). Modelling energy supply options for electricity generations in Tanzania. Journal of Energy in Southern Africa, 26(3), 41-57. Kumar, T. B., Sekhar, O. C., Ramamoorty, M., & Lalitha, S. V. N. L. (2016). Evaluation of power capacity availability at load bus in a composite power system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(4), 1324-1331. Kuzemko, C., Blondeel, M., Dupont, C., & Brisbois, M. C. (2022). Russia's war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Research & Social Science, 93, 102842. Li, G., Yang, Y., Liu, Z., He, Z., & Li, C. (2025). Electricity demand forecasting and power supply planning under carbon neutral targets. ENERGY REPORTS, 13, 2740-2751. Lund, H. (2007). Renewable energy strategies for sustainable development. energy, 32(6), 912-919. Majles Research Center. (2022). Qānun-e jahesh-e tolid-e dānesh-bonyān [Law on the leap of knowledge-based production]. Majles Research Center of the Islamic Republic of Iran. [In Persian] Manzour, D., & Majed, V. (2011). A prologue on energy planning methodology. Iranian Journal of Energy, 14(3), 79–100. http://necjournals.ir/article-1-267-fa.html [In Persian] Melikoglu, M. (2025). Forecasting of municipal solid waste generation in Türkiye and techno-economic-environmental assessment of electricity generation via incineration till 2032. Next Sustainability, 5, 100092. Mehnatfar, U. and Hossein Nia Chafjiri, S. (2024). The effect of intensity of renewable and non-renewable energy on the economic growth of industrialized countries. Journal of Industrial Economics researches, 8(30), 25-40. doi: 10.30473/jier.2025.72511.1466 [In Persian] Monjazeb, M. , ghanbari, S. and Movahedi, A. (2025). The Estimation of Gap Consumption of Domestic Electricity Power in High Consumption Provinces. Journal of Industrial Economics researches, 9(31), 93-112. doi: 10.30473/jier.2025.58798.1257 [In Persian] Mousavi, S. M., & Sharifi, R. (2024). Payesh-e shakhesh-hā-ye kolān-e bakhsh-e bargh (1): Sāl 1402 [Monitoring macro indicators of the electricity sector (1): Year 1402]. Majles Research Center of the Islamic Republic of Iran. [In Persian] Musibau, H., Gold, K. L., Abdulrasheed, Z., & Muili, H. A. (2025). Poland's net-zero pathways: Moderating role of carbon tax and renewable energy on electricity generation through a novel multivariate quantile-on-quantile regression approach. Journal of Environmental Management, 380, 124848. Nel, W. P., & Cooper, C. J. (2009). Implications of fossil fuel constraints on economic growth and global warming. Energy Policy, 37(1), 166-180. Noor, M., Khan, D., Khan, A., & Rasheed, N. (2024). The impact of renewable and non-renewable energy on sustainable development in South Asia. Environment, Development and Sustainability, 26(6), 14621-14638. Nourelahi M, Babaki R, elyaspour B. The Effect of Electricity Consumption on Gross Domestic Product and Carbon Dioxide Emissions in Iran. Quarterly Journal of Energy Policy and Planning Research 2024; 10 (3) : 4 Nyasapoh, M. A. (2018). Modelling energy supply options for long-term electricity generation-a case study of Ghana power system (Doctoral dissertation, University of Ghana). Ozawa, A., Tsani, T., & Kudoh, Y. (2022). Japan’s pathways to achieve carbon neutrality by 2050 – Scenario analysis using an energy modeling methodology. Renewable and Sustainable Energy Reviews, 169, Article 112943. https://doi.org/10.1016/j. rser.2022.112943 Popov, N., Ilijovski, I., & Popovski, V. (2015). Planning of Energy Demand and Supply in Macedonia Using the MAED and MESSAGE Model. Rečka, L. (2011). Electricity system optimization: A case of the Czech electricity system–application of model MESSAGE. Proceedings of the 5th International Days of Statistics and Economics. Ren, Z., Zhang, S., Liu, H., Huang, R., Wang, H., & Pu, L. (2024). The feasibility and policy engagements in achieving net zero emission in China’s power sector by 2050: A LEAP-REP model analysis. Energy Conversion and Management, 304(118230), 0196–8904. https://doi.org/10.1016/j.enconman.2024.118230 Roh, Myung Sub, Kim, Hee Won, (2017). Long term energy plan for Korea using MESSAGE for energy optimization, I.J.o.E.R.T. (IJERT). https://www.ijert.org/research/long-term-energy-plan-for-korea-usingmessage for-energy-optimization-IJERTV6IS080220.pdf. Saffari, B., Nasr-Esfahani, R., & Mansouri, N. (2016). Optimal sustainable energy supply planning using goal programming model: A case study of Isfahan County. Economic Research Quarterly, 51(2), 413–435. https://doi.org/10.22059/jte.2016.58459 [In Persian] Voumik, L. C., Islam, M. A., Ray, S., Mohamed Yusop, N. Y., & Ridzuan, A. R. (2023). CO2 emissions from renewable and non-renewable electricity generation sources in the G7 countries: static and dynamic panel assessment. Energies, 16(3), 1044. Wambui, V., Njoka, F., Muguthu, J., & Ndwali, P. (2022). Scenario analysis of electricity pathways in Kenya using Low Emissions Analysis Platform and the Next Energy Modeling system for optimization. Renewable and Sustainable Energy Reviews, | ||
|
آمار تعداد مشاهده مقاله: 30 تعداد دریافت فایل اصل مقاله: 17 |
||