| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,847 |
| تعداد مشاهده مقاله | 22,204,707 |
| تعداد دریافت فایل اصل مقاله | 14,929,261 |
Fe3O4/rice husk/ polypyrrole nanocomposite as a sorbent for efficient lead removal | ||
| Iranian Journal of Analytical Chemistry | ||
| دوره 11، شماره 2 - شماره پیاپی 22، آذر 2024، صفحه 203-210 اصل مقاله (687.83 K) | ||
| نوع مقاله: Full research article | ||
| شناسه دیجیتال (DOI): 10.30473/ijac.2026.77082.1335 | ||
| نویسندگان | ||
| Fatemeh Sabermahani* 1؛ Mohammad Daneshpazhooh2 | ||
| 1Department of Chemistry, Payame Noor University, Kerman, Iran | ||
| 2Department of Chemistry, PayameNoor University, Kerman, Iran | ||
| چکیده | ||
| Heavy metal pollution, particularly lead (Pb2+), poses a significant threat to the environment and human health. In this study, Fe3O4/rice husk/ polypyrrole (Fe3O4/Rh/PPy) nanocomposite was synthesized and used for removal of lead from aqueous solutions. In the first, Fe3O4 magnetic nanoparticle was prepared through a simple and one step method and then polypyrrole (PPy) was synthesised chemically on the surface of nanoparticle. FeCl3 was used as chemical oxidants for oxidation of pyrrole to PPy. The new nanocomposite was characterized by FT-IR, SEM and Dynamic Light Scattering method. The effect of pH, contact time, adsorbent dose, initial concentration, ionic strength and the effect of temperature on the adsorption was checked out in a batch process. Optimal adsorption conditions were determined at pH~ 7, 0.04 g dosage, 45 min contact time, and 30 ppm initial lead concentration, yielding a maximum lead removal efficiency of 99.7 %. Using the equilibrium constants obtained at different temperatures, the thermodynamic parameters were calculated and showed that the uptake of lead is spontaneous and exothermic. The maximum adsorption capacity by using Langmuir equation was calculated 85.47 mg/g. The kinetic data followed by Pseudo second. | ||
| کلیدواژهها | ||
| Fe3O4/rice husk/ polypyrrole nanocomposite؛ Removal؛ Lead | ||
| عنوان مقاله [English] | ||
| نانوکامپوزیت پلی پیرول/ سبوس برنج/ Fe3O4 بعنوان یک جاذب برای حذف موثر سرب | ||
| نویسندگان [English] | ||
| محمد دانش پژوه2؛ | ||
| 1بخش شیمی، دانشگاه پیام نور، کرمان، ایران | ||
| چکیده [English] | ||
| نانوکامپوزیت پلی پیرول/ سبوس برنج/ Fe3O4 بعنوان یک جاذب برای حذف موثر سرب آلودگی عناصر سنگین خصوصا سرب رفتار ویژه ای برروی سلامتی انسان و محیط زیست دارد. در این مطالعه نانوکامپوزیت پلی پیرول/ سبوس برنج/ Fe3O4 ( Fe3O4/Rh/ppy ( سنتز و برای حذف سرب از محیطهای آبی استفاده شد. در ابتدا نانوذره مغناطیسی Fe3O4 با یک روش ساده و یک مرحله ای آماده و سپس پلی پیرول برای کارایی بیشتر جاذب به طریق شیمیایی برروی سطح نانوذره قرار گرفت. FeCl3 بعنوان اکسید کننده برای اکسیداسیون پیرول استفاده شد. نانوکامپوزیت جدید توسط FT-IR SEM , وDLS مورد بررسی قرار گرفت. اثر pH ، زمان تماس، مقدار جاذب، غلظت سرب، قدرت یونی و اثردما برروی جذب بروش ناپیوسته بررسی شد . بهترین شرایط در pH~ 7 ، مقدار جاذب 04/0 گرم ، زمان تماس 45 دقیقه، غلظت اولیه ppm 30 تعیین گردید که منجر به بیشترین جذب سرب با درصد حذف 7/99 گردید. با استفاده از ثابتهای تعادلی بدست آمده در دماهای مختلف، پارامترهای ترمودینامیکی محاسبه شدندکه بیانگر خودبخودی و گرمازا بودن فرآیند جذب سرب می باشد. حداکثر ظرفیت جذب با استفاده ازمعادله لانگمویر47/85 میلی گرم بر گرم محاسبه شد. داده های سینتیکی با شبه مرتبه دوم مطابقت داشتند. | ||
| کلیدواژهها [English] | ||
| لغات کلیدی: نانوکامپوزیت پلی پیرول/ سبوس برنج/ Fe3O4, حذف, سرب | ||
| مراجع | ||
[1]T.A. Abdullah, AH. Abdalsalam, A.A. Ati, R.T. Rasheed, S. Al–Anssari, Novel CoCdFe2O4/ Chitosan–PANi ternary nanocomposite for High-Efficiency Lead Removal. J. Solid State Chem. 355 (2026) 125794.[2] S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater 97 (2003) 219-243.
[3] M.A. Taleb, Nanostructured aerogels for adsorptive removal of pharmaceutical pollutants from wastewater: a review on synthesis and application. J. Environ. Chem. Eng. (2024) 114538.
[4] A. Ara, J.A. Usmani, Lead toxicity: a review. Interdiscip. Toxicol. 8 (2) (2015) 55-64.
[5] A.A. Ramírez-Coronel, Hospital wastewater treatment methods and its impact on human health and environments. Rev. Environ. Health 39 (3)(2024) 423-434.
[6] R. Moradi, Study of Fe3O4/ZnO nanocomposite efficiency in Ponceau 4R dye photodegradation process and optimization of operational parameters. Iran. J. Chem. Chem. Eng. (IJCCE) Res. Artic. 43 (11) (2024).
[7] N. Ul Haq, Drinking water: a major source of lead exposure in Karachi, Pakistan. EMHJ-East. Mediterr. Health J. 17(11)(2011) 882-886.
[8] B. Tessema, Synthesis and characterization of biosilica gel produced from teff (Eragrostis tef) straw using the sol-gel technique. Bioresour. Technol. Rep. 22(2023) 101497.
[9] B. Tessema, G. Gonfa, S. Mekuria, Preparation of modified silica gel supported silver nanoparticles and its evaluation using zone of inhibition for water disinfection. Arab. J. Chem., (2024) 106036.
[10] B. Tessema, Synthesis and evaluation of the anti-bacterial effect of modified silica gel supported silver nanoparticles on E. coli and S. aureus. Results Chem. 7(2024) 101471.
[11] B. Tessema, Characteristic investigations on bio-silica gel prepared from teff (eragrostis tef) straw: effect of calcination time. Mater. Res. Express 10 (11)(2023) 115102.
[12] B.T. Asfaw, K.B. Gebeyehu, Production of waste animal bone as a heterogeneous solid base catalyst for transesterification of Jatropha oil. Int. J. Chem. Sep. Technol. 5 (1) (2019) 28-48.
[13] S.S. AlNeyadi, Phosphazene-based covalent organic framework: advanced leadcapture material with visual indicator for efficient water purification. J. Hazard. Mater. Adv. 17 (2025) 100593.
[14] L.F. Musico, C.M. Santos, M.L.P. Dalida, and D.F.R. odrigues, Improved removal of lead(II) from water using a polymer-based graphene oxide nanocomposite, J. Mater. Chem. (2013) 3789-3796.
[15] S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, and A.K. Sood, Graphene oxide MnFe2O4 magnetic nanohy-brids for efficient removal of lead and arsenic from, water. Appl. Mater. Interf. 6(2014) 7426-17436.
[16] S. Joshi, V.K. Garg, J. Saini, and K. Kadirvelu, Removal of toulidine blue O dye from aqueous solution by silica-iron oxide nanoparticles, Mater.Focus. 7 (2018) 140–146.
[17] P.V. Thitame, and S.R.Shukla, Removal of lead (II) from synthetic solution and industry wastewater using almond shell activated carbon, Environ. Prog. Sustain Energy 36 (2017) 1628–1633.
[18] Y.M. Ahmed, A. Al-Mamun, A. Khatib, M.R., Al, A.T.Jameel and M. AlSaadi, Efficient lead sorption from wastewater by carbon nanofibers, Environ. Chem. Lett. 13 (2015) 341–346.
[19] R.B. Onyancha, U.O. Aigbe, K.E. Ukhurebor, P.W. Muchiri, Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: a comprehensive review, J. Mol. Struct. 1238 (2021) 130462,
[20] T.S. Merjan , Z.T. Abd Ali, Green synthesis of bimetallic and trimetallic nanoparticles on glass granules for lead removal, Desalin. Water Treat. 322(2025) 101082.[21] U.M. Ismail, A. I. Ibrahim, S.A. Onaizi, M. S. Vohra, Synthesis and application of MgCuAl-layered triple hydroxide /carboxylated carbon nanotubes/bentonite nanocomposite for the effective removal effective removal of lead from contaminated water, Results Engin. 24 (2024) 102991. [22] J. Saini, V.K. Garg and R.K. Gupta, Green synthesized SiO2@OPW nanocomposites for enhanced Lead (II) removal from water, Arab. J. Chem. 13 (2020) 2496-2507.
[23] H.A. Sani, M.B. Ahmad, M.Z. Hussein, N.A. Brahim and T.A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions, Process Saf. Environ. Protect. 109 (2017) 97-105.
[24] X. Luo, X. Lei, X. Xie, B. Yu, N. Cai and F. Yu, Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite, Carbohyd. Polym. 151(2016) 640-648.
[25] S.Wan, F. He, J. Wu, W. Wan, Y. Gu and B. Gao, Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites, J. Hazard. Mater. 314 (2016)) 32-40.
[26] T.A. Saleh, Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb (II): from surface properties to sorption mechanism, Desalin. Water Treat. 57(23)(2016) 10730-10744.
[27] R. Ansari, N. Khoshbakht Fahim. Application of polypyrrole coated on wood sawdust for removal of Cr(VI) ion from aqueous solutions, React. Funct. Polym. 67 (2007) 367-374 | ||
|
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 26 |
||