| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,847 |
| تعداد مشاهده مقاله | 22,203,695 |
| تعداد دریافت فایل اصل مقاله | 14,928,998 |
Comparative Electrochemical Study of Ferrocene and UiO-66-NH2 Metal–Organic Framework Modified Glassy Carbon Electrode With/Without Reduced Graphene Oxide for Sensitive Determination of Hydroxychloroquine | ||
| Iranian Journal of Analytical Chemistry | ||
| دوره 11، شماره 2 - شماره پیاپی 22، آذر 2024، صفحه 211-222 اصل مقاله (1.51 M) | ||
| نوع مقاله: Full research article | ||
| شناسه دیجیتال (DOI): 10.30473/ijac.2026.77002.1333 | ||
| نویسندگان | ||
| Abdolhamid Hatefi-Mehrjerdi* ؛ Hamid Reza Sobhi؛ Amir Hossein Esmaeili؛ Behzad Ahmadzadeh Fard | ||
| Department of Chemistry, Payam Noor University, P.O. Box 19395- 4697, Tehran, Iran. | ||
| چکیده | ||
| Hydroxychloroquine (HCQ) is a widely studied therapeutic agent that has garnered significant attention for its potential applications across a range of diseases. HCQ has since been investigated for its immunomodulatory and antiviral properties, making it a candidate in the management of autoimmune disorders as well as certain viral infections. The development of efficient electrochemical sensors for accurate HCQ measurement is crucial for clinical and pharmaceutical applications. This study presents a comprehensive comparative electrochemical investigation of glassy carbon electrode (GCE) modified with ferrocene (FC) and UiO-66-NH2 metal–organic frameworks (MOF), with and without reduced graphene oxide (rGO), for the sensitive detection of HCQ. FC and MOF incorporated with rGO to enhance their electrochemical properties. The fabricated HCQ sensor, with three wide linear ranges (1-50 nM, 50-1000 nM, and 1-100 μM), high sensitivity (0.265 μA nM−1, 0.032 μA nM−1, and 0.517 μA μM−1), and low detection limit (0.215 nM), was applied successfully for the analysis of real human blood serum and urine samples. | ||
| کلیدواژهها | ||
| Ferrocene؛ Metal–Organic Framework؛ Reduced Graphene Oxide؛ Sensitive Electrochemical Detection؛ Hydroxychloroquine | ||
| عنوان مقاله [English] | ||
| مطالعه الکتروشیمیایی مقایسهای الکترود کربن شیشهای اصلاحشده با فروسن و چارچوبهای فلزی–آلی UiO-66-NH2 با/بدون گرافن اکسید کاهشیافته برای تعیین حساس هیدروکسیکلروکین | ||
| نویسندگان [English] | ||
| عبدالحمید هاتفی مهرجردی؛ | ||
| عضو هیئت علمی پیام نور دلیجان | ||
| چکیده [English] | ||
| هیدروکسیکلروکین (HCQ) یک عامل درمانی پرمطالعه است که توجه زیادی را به دلیل کاربردهای بالقوه آن در طیف وسیعی از بیماریها به خود جلب کرده است. HCQ به دلیل خواص ایمنیتعدیلکننده و ضدویروسی مورد بررسی قرار گرفته و بهعنوان گزینهای در مدیریت اختلالات خودایمنی و برخی عفونتهای ویروسی مطرح شده است. توسعه حسگرهای الکتروشیمیایی کارآمد برای اندازهگیری دقیق HCQ در کاربردهای بالینی و دارویی اهمیت فراوانی دارد. این مطالعه یک بررسی جامع و مقایسهای الکتروشیمیایی از الکترود کربن شیشهای (GCE) اصلاحشده با فروسن (FC) و چارچوبهای فلزی–آلی UiO-66-NH2 (MOF)، با و بدون گرافن اکسید کاهشیافته (rGO)، برای آشکارسازی حساس HCQ ارائه میدهد. FC و MOF همراه با rGO بهمنظور بهبود ویژگیهای الکتروشیمیایی آنها به کار گرفته شدند. حسگر ساختهشده برای HCQ با سه بازه خطی گسترده (1–50 نانومولار، 50–1000 نانومولار، و 1–100 میکرومولار)، حساسیت بالا (μA nM−1 ۲۶۵/۰، μA nM−1 032/0 و μA μM−1 517/0) و حد تشخیص پایین (215/0 نانومولار)، با موفقیت برای تجزیه نمونههای واقعی سرم خون و ادرار انسان مورد استفاده قرار گرفت. | ||
| کلیدواژهها [English] | ||
| فروسن, چارچوب فلزی–آلی, گرافن اکسید کاهشیافته, آشکارسازی الکتروشیمیایی حساس, هیدروکسیکلروکین | ||
| مراجع | ||
|
[1] N. Sandhyarani, Surface modification methods for electrochemical biosensors, in: Ali A. Ensafi (Ed.), Electrochemical Biosensors, Elsevier, 2019: pp. 45–75. https://doi.org/10.1016/B978-0-12-816491-4.00003-6.
[2] R. Singh, R. Gupta, D. Bansal, R. Bhateria, M. Sharma, A Review on Recent Trends and Future Developments in Electrochemical Sensing, ACS Omega 9 (2024) 7336–7356. https://doi.org/10.1021/ACSOMEGA.3C08060.
[3] D.P.; Carroll, P.M. Mendes, Recent advances in surface modification and antifouling strategies for electrochemical sensing in complex biofluids, Curr Opin Electrochem 40 (2023) 101319. https://doi.org/10.1016/j.coelec.2023.101319.
[4] M. Pimpilova, A brief review on methods and materials for electrode modification: electroanalytical applications towards biologically relevant compounds, Discov Electrochem 1:12 (2024) 1–20. https://doi.org/10.1007/s44373-024-00012-8.
[5] K. Fu, J.W. Seo, V. Kesler, N. Maganzini, B.D. Wilson, M. Eisenstein, B. Murmann, H.T. Soh, Accelerated Electron Transfer in Nanostructured Electrodes Improves the Sensitivity of Electrochemical Biosensors, Adv Sci (Weinh) 8 (2021) e2102495. https://doi.org/10.1002/ADVS.202102495.
[6] M.A. Deshmukh, H.N. Thorat, N.S. Gajmal, Carbon-Based Nanomaterials in Enhancing the Performance of Electrochemical Sensors for Environmental Monitoring, in: A.M. Parambil, E. Priyadarshini, P. Rajamani (Eds.), Carbon: Bulk-to-Nano Forms for Detection and Remediation of Environmental Contaminants, Springer, Cham, 2025: pp. 163–187. https://doi.org/10.1007/978-3-031-90613-8_6.
[7] R.D. Crapnell, C.E. Banks, Electroanalytical Overview: Screen-Printed Electrochemical Sensing Platforms, ChemElectroChem 11 (2024) e202400370. https://doi.org/10.1002/CELC.202400370;REQUESTEDJOURNAL:JOURNAL:21960216;ISSUE:ISSUE:DOI.
[8] S. Kempahanumakkagari, K. Vellingiri, A. Deep, E.E. Kwon, N. Bolan, K.H. Kim, Metal–organic framework composites as electrocatalysts for electrochemical sensing applications, Coord Chem Rev 357 (2018) 105–129. https://doi.org/10.1016/j.ccr.2017.11.028.
[9] R. Lalawmpuia, M. Lalhruaitluangi, Lalhmunsiama, D. Tiwari, Metal organic framework (MOF): Synthesis and fabrication for the application of electrochemical sensing, Environmental Engineering Research 29 (2024) 230636. https://doi.org/10.4491/EER.2023.636.
[10] Z.C. Yin, S.Q. Li, Z.Y. Shi, A. Singh, D. Srivastava, M. Muddassir, A. Kumar, J.C. Jin, New 5-nitrobenzene-1,2,3-tricarboxylate appended Cd(II) MOF: Synthesis and photoluminescent sensing of nitrofurazone (NFZ), Mater Today Chem 44 (2025) 102582. https://doi.org/10.1016/J.MTCHEM.2025.102582.
[11] R.K. Yan, X.L. Chen, J. Ren, H.L. Cui, H. Yang, J.J. Wang, Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption, Spectrochim Acta A Mol Biomol Spectrosc 330 (2025) 125669. https://doi.org/10.1016/J.SAA.2024.125669.
[12] E. Kipkorir, O. Kimani, Electrochemical sensing of pharmaceutical pollutants using modified glassy carbon electrodes with nanostructures: A review, Inorg Chem Commun 179 (2025) 114827. https://doi.org/10.1016/J.INOCHE.2025.114827.
[13] L. Shubhadarshinee, P. Mohapatra, S. Behera, B.R. Jali, P. Mohapatra, A.K. Barick, Review on synthesis and characterization of metal nanoparticles doped carbon nanofillers based nanohybrids reinforced polyaniline nanocomposites, Polym.-Plast. Technol. Mater 63 (2024) 1011–1035. https://doi.org/10.1080/25740881.2024.2314508.
[14] A. Kumar, K.M. Gangawane, Nanoparticle-Modified Multifunctional Nano Carbons—Advances in Energy Storage, in: S.S. Kumar, P. Sharm, T. Kumar, V. Kumar (Eds.), Advances in Sustainable Energy Technologies, American Chemical Society, 2024: pp. 143–167. https://doi.org/10.1021/BK-2024-1488.CH007.
[15] T. Luan, Y. Zhao, X. Hou, Z. Tan, X. Li, J. Li, F. Wu, Integrated electrode design based on metal–organic frameworks for anion exchange membrane electrolyzers under high current densities, J Colloid Interface Sci 692 (2025) 137506. https://doi.org/10.1016/J.JCIS.2025.137506.
[16] M. Chalermnon, S.R. Thomas, J.M. Chin, M.R. Reithofer, Rational design of metal–organic frameworks (MOFs) as hosts for nanoparticles in catalytic applications: concepts, strategies, and emerging trends, Inorg Chem Front 12 (2025) 6435–6459. https://doi.org/10.1039/D5QI01201E.
[17] C. Li, H. Zhang, M. Liu, F.-F. Lang, J. Pang, X.-H. Bu, Recent progress in metal–organic frameworks (MOFs) for electrocatalysis, Ind. Chem. Mater. 1 (2023) 9–38. https://doi.org/10.1039/D2IM00063F.
[18] M.F. Sanad, S.T. Sreenivasan, Metal-organic framework in fuel cell technology: Fundamentals and application, in: S. Dave, R. Sahu, B.c. Tripathy (Eds.), Electrochemical Applications of Metal-Organic Frameworks: Advances and Future Potential, Elsevier, 2022: pp. 135–189. https://doi.org/10.1016/B978-0-323-90784-2.00001-0.
[19] H.Q. Zheng, Y. Cui, G. Qian, Guest Encapsulation in Metal–Organic Frameworks for Photonics, Acc Mater Res 4 (2023) 982–994. https://doi.org/10.1021/ACCOUNTSMR.3C00169.
[20] W. Zheng, L.Y.S. Lee, Metal–Organic Frameworks for Electrocatalysis: Catalyst or Precatalyst?, ACS Energy Lett 6 (2021) 2838–2843. https://doi.org/10.1021/ACSENERGYLETT.1C01350.
[21] C. Duan, K. Liang, Z. Zhang, J. Li, T. Chen, D. Lv, L. Li, L. Kang, K. Wang, H. Hu, H. Xi, Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks, Nano Mater. Sci. 4 (2022) 351–365. https://doi.org/10.1016/J.NANOMS.2021.12.003.
[22] S. Murugaiyan, M.S. Shabanur Matada, G.P. Kuppuswamy, S. Velappa Jayaraman, C. Di Natale, Y. Sivalingam, Carbon Electrodes Coated with TiO2–Cu-MOF Composites for Nonenzymatic Detection of Ascorbic Acid, ACS Appl Nano Mater 8 (2025) 20164–20176. https://doi.org/10.1021/ACSANM.5C02223.
[23] B.M. Kim, G.W. Jang, C. Ko, K.M. Choi, W.H. Choi, J. Shin, Individually Encapsulating Metal–Organic Frameworks in Partially Reduced Graphene Oxide to Enhance Electrical Conductivity While Preserving Porosity, ACS Appl Nano Mater 8 (2025) 20156–20163. https://doi.org/10.1021/ACSANM.5C02501.
[24] N. Nardi, L.G. Baumgarten, J.P. Dreyer, E.R. Santana, J.P. Winiarski, I.C. Vieira, Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine, J Pharm Biomed Anal 236 (2023) 115681. https://doi.org/10.1016/j.jpba.2023.115681.
[25] J.P.C. Silva, D.R. Santos-Neto, C.E.C. Lopes, L.R.G. Silva, L.M.F. Dantas, I.S. da Silva, A high sensitivity adsorptive-electrochemical method for rapid and portable determination of hydroxychloroquine, J Solid State Electrochem 29 (2025) 1013–1023. https://doi.org/10.1007/s10008-024-06032-z.
[26] M.H.A. Feitosa, A.M. Santos, A. Wong, M.D.P.T. Sotomayor, W.R.P. Barros, M.R.V. Lanza, F.C. Moraes, Enhancing hydroxychloroquine detection using carbon paste electrode modified with platinum nanoparticles and MWCNTs, J Appl Electrochem 55 (2025) 2265–2276. https://doi.org/10.1007/s10800-025-02293-2.
[27] J.C. dos Santos Júnior, J. de Oliveira S. Silva, J.F. dos Santos, M.D. Santos Monteiro, M. Oliveira Rodrigues, E. Midori Sussuchi, Nanoparticles based on carbon dots and reduced graphene oxide as electrochemical sensor for voltammetric determination of hydroxychloroquine, Electroanalysis 36 (2024) e202300164. https://doi.org/10.1002/elan.202300164.
[28] P.A. Pushpanjali, J.G.Manjunatha, N. Hareesha, T. Girish, A.A. Al-Kahtani, A.M. Tighezza, N. Ataollahi, Electrocatalytic Determination of Hydroxychloroquine Using Sodium Dodecyl Sulphate Modified Carbon Nanotube Paste Electrode, Top Catal 68 (2025) 1373–1381. https://doi.org/10.1007/s11244-022-01568-8.
[29] M. Amiri, Z. Hashemi, F. Chekin, Zinc oxide nanoparticles decorated nitrogen doped porous reduced graphene oxide-based hybrid to sensitive detection of hydroxychloroquine in plasma and urine, J Mater Sci Mater Med 36:4 (2025) 1–11. https://doi.org/10.1007/s10856-024-06847-2 | ||
|
آمار تعداد مشاهده مقاله: 40 تعداد دریافت فایل اصل مقاله: 29 |
||