| تعداد نشریات | 49 |
| تعداد شمارهها | 1,261 |
| تعداد مقالات | 10,847 |
| تعداد مشاهده مقاله | 22,204,698 |
| تعداد دریافت فایل اصل مقاله | 14,929,252 |
Comparison of Some MCDM Techniques in a Hesitant Fuzzy Environment | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 26 بهمن 1404 اصل مقاله (901.85 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2026.74974.1318 | ||
| نویسندگان | ||
| Harmandeep Kaur؛ Sukhpreet Kaur Sidhu* | ||
| Department of Mathematics, Akal University, Talwandi Sabo (151302), Punjab, India | ||
| چکیده | ||
| Multi-criteria decision-making (MCDM) often involves situations characterized by uncertainty, ambiguity, and vagueness. To address such complexities, MCDM techniques play a crucial role. This paper presents a comparative analysis of two widely used methods—Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)—within a hesitant fuzzy environment. Hesitant fuzzy sets allow decision-makers to express hesitation by assigning multiple possible membership values to an element rather than a single value. In this framework, the TOPSIS ranks alternatives based on their closeness to the positive and negative ideal solutions, while the VIKOR identifies a compromise solution by balancing individual and collective regret measures. The effectiveness of the comparison is demonstrated through illustrative numerical examples. Moreover, some real life applications of these methods are discussed. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Multi-criteria decision-making؛ Fuzzy؛ Hesitant fuzzy set؛ TOPSIS؛ VIKOR؛ Kendall’s rank correlation؛ Decision uncertainty | ||
| مراجع | ||
|
[1] Makki, A.A., Abdulaal, R.M.S. (2023). “A hybrid MCDM approach based on fuzzy MEREC-G and fuzzy RATMI”. Mathematics, 11(17), 3773. DOI: https://doi.org/ 10.3390/math11173773 [2] Narayanamoorthy, S., Annapoorani, V., Kalaiselvan, S., Kang, D. (2020). “Hybrid hesitant fuzzy multi-criteria decision-making method: A symmetric analysis of the selection of the best water distribution system”. Symmetry, 12(12), 2096. DOI: https: //doi.org/10.3390/sym12122096 [3] Atanassov, K.T. (1986). “Intuitionistic fuzzy sets”. Fuzzy Sets and Systems, 20(1), 87-96. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3 [4] Babakordi, F., Allahviranloo, T. (2022). “Introducing and solving the hesitant fuzzy system AX = B”. Control and Cybernetics, 50(4), 553-574. DOI: https://doi.org/10. 2478/candc-2021-0031 [5] Babakordi, F., Taghi-Nezhad, N.A. (2021). “Introducing hesitant fuzzy equations and determining market equilibrium price”. Control and Cybernetics, 50(3), 363-382. DOI: https://doi.org/10.2478/candc-2021-0022 [6] Babakordi, F., Taghi-Nezhad, N.A. (2024). “Hesitant fuzzy equation”. Control and Optimization in Applied Mathematics, 9(1), 67-79. DOI: https://doi.org/10.30473/coam.2023.68208.1240 [7] Babakordi, F. (2024). “Arithmetic operations on generalized trapezoidal hesitant fuzzy numbers and their application to solving generalized trapezoidal hesitant fully fuzzy equation”. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 32(01), 85-108. DOI: https://doi.org/10.1142/S0218488524500041 [8] Babakordi, F. (2025). “Introducing two new classes of hesitant fuzzy soft sets”. Fuzzy Optimization and Modeling Journal, 6(1), 1-6. DOI: https://doi.org/10.57647/j. fomj.2025.8670 [9] Benayoun, R., Roy, B., Sussman, B. (1966). “ELECTRE: Une m´ethode pour guider le choix en pr´esence de points de vue multiples”. Note de travail 49, SEMA, Paris. https://side.developpement-durable.gouv.fr/CENT/doc/SYRACUSE/296320/electre-une-ethode-pour-guider-le-choix-en-presence-de-points-de-vue-multiples [10] Bhargava, A.K. (2013). “Fuzzy set theory, fuzzy logic, and their applications”. S. Chand Publishing. [11] Ferrara, M., Ciano, T., Nava, C.R., Cananà, L. (2023). “Multi-criteria decision analysis: Hesitant fuzzy multi-criteria decision analysis towards expert systems for analyzing financial markets dynamics”. Soft Computing. DOI: https://doi.org/10.1007/ s00500-023-09441-w [12] Garg, H., Keikha, A., Nehi, H.M. (2020). “Multiple-attribute decision-making problem using TOPSIS and Choquet integral with hesitant fuzzy number information”. Mathematical Problems in Engineering, 2756720. DOI: https://doi.org/10.1155/2020/ 9874951 [13] Hansen, P., Devlin, N.J. (2019). “Multi-criteria decision-analysis (MCDA) in healthcare decision-making”. Oxford Research Encyclopedias, Economics and Finance. https:// api.semanticscholar.org/CorpusID:195451503 [14] Hwang, C.L., Yoon, K. (1981). “Multiple attribute decision making: Methods and applications”. Lecture Notes in Economics and Mathematical Systems, 186, Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-48318-9 [15] Liao, H., Xu, Z. (2013). “A VIKOR-based method for hesitant fuzzy multi-criteria decision making”. Fuzzy Optimization and Decision Making, 12(4), 373-392. DOI: https: //doi.org/10.1007/s10700-013-9162-0 [16] Liao H., Xu, Z. (2014). “Subtraction and division operations over hesitant fuzzy sets”. Journal of Intelligent and Fuzzy Systems, 27(1), 65-72. DOI: https://doi.org/10.3233/IFS-130978 [17] Liao, H., Xu, Z. (2017). “Hesitant fuzzy decision-making methodologies and applications”. Springer, Berlin, Germany. DOI: https://doi.org/10.1007/ 978-981-10-3265-3 [18] Torra, V., Narukawa, Y. (2009). “On hesitant fuzzy sets and decision”. In: Proceedings of the 8th IEEE International Conference on Fuzzy Systems, Jeju Island, South Korea, 1378- 1382. DOI: https://doi.org/10.1109/FUZZY.2009.5276884 [19] Opricovic, S., Tzeng, G.H. (2004). “Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS”. European Journal of Operational Research, 156(2), 445-455. DOI: https://doi.org/10.1016/S0377-2217(03)00020-1 [20] Raza, R., Ab Ghani, A.T., Abdullah, L. (2025). “The development of IV-VIKOR method under hesitant fuzzy sets in MCDM”. Communications on Applied Nonlinear Analysis, 32(1s), 212–220. DOI: https://doi.org/10.52783/cana.v32.2150 [21] Saaty, T.L. (1980). “The analytic hierarchy process”. McGraw-Hill, New York. [22] Saha, A., Rage, K., Senapati, T., Chatterjee, P., Zavadskas, E.K., Sliogerienė, J. (2025). “A consensus-based MULTIMOORA framework under probabilistic hesitant fuzzy environment for manufacturing vendor selection”. Informatica, 36(3), 713–736. DOI: https: //doi.org/10.15388/24-INFOR581 [23] Taghi-Nezhad, N.A., Babakordi, F. (2023). “Fully hesitant parametric fuzzy equation”. Soft Computing, 27(16), 11099-11110. DOI: https://doi.org/10.1007/ s00500-023-08401-8 [24] Torra, V. (2010). “Hesitant fuzzy sets”. International Journal of Intelligent Systems, 25(6), 529-539. DOI: https://doi.org/10.1002/int.20418 [25] Verma, R., Sharma, B.D. (2013). “New operations over hesitant fuzzy sets”. Fuzzy Information and Engineering, 5(2), 129-146. DOI: https://doi.org/10.1007/ s12543-013-0137-1 [26] Xu, Z., Xia, M. (2011). “Distance and similarity measures for hesitant fuzzy sets”. Information Sciences, 181(11), 2128-2138. DOI: https://doi.org/10.1016/j.ins. 2011.01.028 [27] Zadeh, L.A. (1965). “Fuzzy sets”. Information and Control, 8(3), 338-353. DOI: https: //doi.org/10.1016/S0019-9958(65)90241-X [28] Zhang, N., Wei, G. (2013). “Extension of VIKOR method for decision making problem based on hesitant fuzzy set”. Applied Mathematical Modeling, 37(7), 4938–4947. DOI: https://doi.org/10.1016/j.apm.2012.10.002 [29] Zhiming, Z., Wu, C. (2014). “Weighted hesitant fuzzy sets and their application to multicriteria decision making”. Journal of Advances in Mathematics and Computer Science, 4(8), 1091-1123. DOI: https://doi.org/10.9734/BJMCS/2014/8533 | ||
|
آمار تعداد مشاهده مقاله: 15 تعداد دریافت فایل اصل مقاله: 13 |
||