
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,218,630 |
تعداد دریافت فایل اصل مقاله | 13,907,664 |
Solving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems | ||
Control and Optimization in Applied Mathematics | ||
مقاله 4، دوره 2، شماره 1، تیر 2017، صفحه 43-63 اصل مقاله (696.11 K) | ||
نوع مقاله: Applied Article | ||
نویسندگان | ||
Azhdar Soleymanpour Bakefayat* 1؛ Sima Karamseraji2 | ||
1Department of Mathematics, Farhangian University, Tehran, Iran | ||
2Department of Mathematics, Karaj Branch, Islamic Azad University, Alborz, Iran | ||
چکیده | ||
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system through the Newton numerical method has got a particular priority, in that, in this method, the number of the unknowns could be more than the number of equations. Besides, the point of departure of the system could be an infeasible point. It has been proved that the obtained dynamical system is stable, and the response of this system can be achieved by using of the fourth order Runge-Kutta. The results of this method is comparable with the similar numerical methods; in most of the cases, the obtained results by the presented method are more efficient than those obtained by other numerical methods. The efficiency of the new method will be investigated through examples. | ||
کلیدواژهها | ||
Second kind Fredholm-Volterra integral equations؛ Nonlinear systems؛ Dynamical systems؛ Triangular functions؛ Block-pulse functions | ||
عنوان مقاله [English] | ||
حل معادلات انتگرال ولترا-فردهلم نوع دوم با استفاده از توابع مثلثی و سیستمهای دینامیکی | ||
نویسندگان [English] | ||
اژدر سلیمانپور باکفایت1؛ سیما کرم سراجی2 | ||
1استادیار ریاضی کاربردی، تهران، دانشگاه فرهنگیان، گروه ریاضی | ||
2دانشجوی دکتری ریاضی کاربردی، البرز، دانشگاه آزاد اسلامی واحد کرج | ||
چکیده [English] | ||
روش توابع مثلثی میتواند تعمیمی از روش بلاک پالس باشد. جواب معادلات انتگرال نوع دوم با استفاده از روش توابع مثلثی، به یک دستگاه معادلات غیرخطی منجر میشود. در این مقاله، دستگاه غیرخطی حاصل توسط یک سیستم دینامیکی حل شده است. حل دستگاه غیرخطی حاصل از روش سیستمهای دینامیکی نسبت به روش عددی نیوتن دارای این مزیت است که در این روش تعداد مجهولات میتواند از تعداد معادلات بیشتر باشد. همچنین نقطه شروع سیستم میتواند نشدنی باشد. ثابت شده است که سیستم دینامیکی حاصل، پایدار بوده و پاسخ این سیستم از روش عددی رانگ کوتای مرتبه 4 حاصل میشود. نتایج حاصل قابل مقایسه با نتایج روشهای عددی مشابه است و در اکثر حالات نتایج بدست آمده بهتر از نتایج روشهای عددی دیگر است. تاثیر روش جدید با ذکر مثالهایی بررسی شده است. | ||
کلیدواژهها [English] | ||
معادلات انتگرال فردهلم-ولترا, سیستمهای غیرخطی, سیستمهای دینامیکی, توابع مثلثی, توابع بلاک پالس | ||
مراجع | ||
[1] Ahmadi Sh. J., Joderi A. A. A., Ebadi G. (2012). `` Approximate solutions of nonlinear Volterra-Fredholm integral equations '', International Journal of Nonlinear Science, 14(4), 425-433.
[2] Asady B., Tavassoli K. M., Hadi V. A., Heydari A. (2005). `` Solving second kind integral equations with hybrid Fourier and block-pulse functions '', Applied Mathematics and Computation, 160, 517-522.
[3] Babolian E., Maleknejad K., Mordad M., Rahimi B. (2011). `` A numerical method for solving Fredholm-Volterra integral equations in two-dimensional space using block pulse functions and an operational matrix '', Journal of Computational and Applied Mathematics, 235, 3965-3971.
[4] Babolian E., Masouri Z. (2008). `` Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions '', Journal of Computational and Applied Mathematics, 220, 51-57.
[5] Babolian E., Shahsavaran A. (2009). `` Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelet '', Journal of Computational and Applied Mathematics, 225, 87-95.
[6] Balakumar V., Murugesan K. (2015). `` Numerical solution of Volterra integral-algebraic equations using block pulse functions '', Applied Mathematics and Computation, 263, 165-170.
[7] Biazar J., Ghazvini H. (2008). `` Numerical solution for special non-linear Fredholm integral equation by HPM '', Applied Mathematics and Computation, 195, 681-687.
[8] Deb A., Dasgupta A., Sarkar G. (2006). `` A new set of orthogonal functions and its application to the analysis of dynamic systems '', Journal of Franklin Institute, 343, 1-26.
[9] Golbabai A., Seifollahi S. (2006). `` Numerical solution of the second kind integral equations using radial basis function networks'', Applied Mathematics and Computation, 174, 877-883.
[10] Haddad W. M., Chellboina V, (2008). `` Nonlinear dynamical systems and control '', Princeton University Press, Princeton and Oxford.
[11] Jiang Z. H., Schaufelberger W. (1992). `` Block pulse functions and their applications in control systems '', Springer Verlag Berlin Heidelberg New York.
[12] Luenberger D. G., (1973). `` Introduction to linear and nonlinear programming '', First Edition, Addision Wesley, Reading, Mass.
[13] Maleknejad K., Almasieh H., Roodaki M. (2010). `` Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations '', Commun Nonlinear Sci Numer Simulat, 15, 3293-3298.
[14] Maleknejad K., Basirat B., Hashemizadeh E. (2011). `` Hybrid Legendre polynomials and Block-Pulse functions approach for nonlinear Volterra-Fredholm integro-differential equations '', Computers and Mathematics with Applications, 61, 2821-2828.
[15] Maleknejad K., Khodabin M., Rostami M. (2012). `` Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions '', Mathematical and Computer Modelling, 55, 791-800.
[16] Maleknejad K., Mahmoudi Y. (2004). `` Numerical solution of linear Fredholm integral equation by using hybrid Taylor and Block-Pulse functions '', Applied Mathematics and Computation, 149, 799-806.
[17] Maleknejad K., Rahimi B. (2011). `` Modification of Block-Pulse functions and their application to solve numerically Volterra integral equation of the first kind '', Communications in Nonlinear Science and Numerical Simulation, 16, 2469-2477.
[18] Maleknejad K., Tavassoli K. M. (2003). `` Solving second kind integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions '', Applied Mathematics and Computation, 145, 623-629.
[19] Mirzaee F., Akbar Hoseini A. (2013). `` Numerical solution of nonlinear Volterra-Fredholm integral equations using hybrid of block-pulse functions and Taylor series '', Alexandria Engineering Journal, 52, 551-555.
[20] Mirzaee F., Hadadiyan E., Bimesl S. (2014). `` Numerical solution for three-dimensional nonlinear mixed Volterra-Fredholm integral equations via three-dimensional block-pulse functions '', Applied Mathematics and Computation 237, 168-175.
[21] Mirzaee F., Komak Yari M., Fatemeh H. S., (2015) `` A computatioal method based on hybrid of Bernstein and block-pulse functions for solving linear fuzzy Fredholm integral equations system '', Journal of taibah University for Science 9, 252-263.
[22] Mirzaee F. (2014). `` Numerical solution of Fredholm fuzzy integral equations of the second kind using hybrid of block-pulse functions and Taylor series '', Ain Shams Engineering Journal.
[23] Nemati S. (2015). `` Numerical solution of Volterra-Fredholm integral equations using Legendre collocation method '', Journal of Computational and Applied Mathematics, 278, 29-36.
[24] Tavassoli Kajani M., Hadi V. A. (2005). `` Solving second kind integral equations with hybrid Chebyshev and Block-Pulse functions '', Applied Mathematics and Computation, 163, 71-77.
[25] Yousefi S., Razzaghi M. (2005). `` Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations '', Mathematics and Computers in Simulation, 70, 1-8. | ||
آمار تعداد مشاهده مقاله: 1,311 تعداد دریافت فایل اصل مقاله: 1,172 |