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1 Introduction

A semi-infinite linear program (SILP) is an optimization problem with a linear objective and
constraint functions where either the number of constrains or the dimension of the variable
space, but not both, is allowed to be infinite. Since, the most natural linear phenomena is con-
tinuous, the SILP models occur in a wide variety of scientific and engineering applications such
as signal processing, filter designing [24], computing solutions of monotonic linear boundary
value problems, experimental design in regression [13], air and water pollution [8], Chebyshev
approximation [10], lapidary cutting problems [28], solution methods for linear programming
problems under uncertainty (like fuzzy systems [15]), transportation problems [26] and geomet-
rical applications [9].

Among the recent studies in this area, we emphasize on using first order approximation
of the feasible set corresponding to constraints qualifications [25], non-smooth semi-infinite
programming (SIP) problems with a feasible set defined by inequality and equality constrains
[17], bivariate interval method for SILP problems [11], and an application of interior point for
solving SILP [19] and SIP to lapidary cutting problems [28].

The primal form of a SILP problem can be formulated mathematically as follows:

(P) min c′x

subject to : a′tx ≥ bt , t ∈ T

where c ∈ Rn, T is the index set, at ≡ a(t) = (a1(t), a2(t), ..., an(t))
′ maps T onto Rn and

bt ≡ b(t) is a scalar function on T . If T is a countable infinite set, then the SILP problem
is called a countable semi-infinite linear program; also, on the other hand, if T is a compact
Hausdorff space and the functions a : T −→ Rn, a(t) = at and b : T −→ R, b(t) = bt are
continuous functions, the problem is called a continuous semi-infinite linear program. It is also
argued in [8] that the natural dualality of a continuous problem (P ) is as follows:

(D) max
∫
T
b(t) dµ

subject to :
∫
T
a(t) dµ = c, µ ∈M+(T ),

where M+(T ) is the set of all positive Radon measures on T . It should be reminded that
a Radom measure is a positive regular Borel measure (which defined on a compact Hausdorff
space) andM+(T ) is the topology space of all positive Radon measures on T . Indeed, a different
duality can be defined for an LSIP problem. Actually (D) coincides with the dual problem of
the general primal LSIP problem by means of Kretschmer duality theory for infinite linear
programming (for more detail and how this dual problem is structured in brief, please see the
Notes in chapter 2 of [8], or more explanations, in the related chapters of the book [18]).

Remark. Throughout the paper, it is supposed that (P) is consistent and

M+(T ) ̸= ϕ.
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Moreover,
∫
T
b(t)dµ − c′x is so-called duality gap [8, 10]. The relations and properties

of the (P) and (D) are discussed in detail in [8, 10] In the absence of duality gap (See [8]),
different methods are available for solving the primal and dual forms of the SILP problems,
including local reduction and discretization Methods [8], three-phase method [7], primal and
dual exchange methods [20], perturbation method [27] and directions method [16]. However, for
existing the duality gap there is not an identified solution method especially for dual problem.

In this paper, a method is discussed for solving (D) in a different mathematical point of
view. In the second section, the underlying space of the problem is equipped with the weak*
topology. Then, the existence of the optimal solution is proved and the problem is converted
into a measure theoretical optimization one. It is shown in Section 3 that the optimal measure
can be identified as a finite linear combination of atomic measures. Moreover, regarding the
unitary atomic measure’s properties, it is shown that the new problem could be still left linear
and constrains can be shown in a very simple form. Then, by considering the ability of the linear
analysis, one can use the simplex method for finding the optimal solution. After presenting the
algorithm path of finding optimal solution by the new method, some numerical tests are done
in section 4 and the results are compared with some other methods.

One of the other important advantages of this method is that, for this theoretical measure
optimization problem, it is possible to characterize and represent the optimal measure in a very
simple way. Hence, to compare it with other methods, there is no complexity on the ambiguous
dimensional and integral forms of the problem; in addition, in general, the optimal solution can
be easily found.

2 Existence

The aim of this section is to show that problem (D) has a solution, independent of (P). This
important aim is achieved by transferring the problem to a new space. To this end, let T be a
bounded, closed, and hence compact subset of Rk; for every F ∈ C(T ) (the set of all continuous
functions F : T −→ Rk) and every positive measure µ ∈ M+(T ),

∫
T
Fdµ is denoted by µ(F ).

Moreover, ϕ ̸= Q ⊂ M+(T ) is defined as the set of all regular measures with the compact
support (say, Radon measures as [12, 22]) on T which satisfies the following equation:

µ(at) = c. (1)

Herein, Q is considered just as a subset of M+(T ) and no topology is considered (or used) on
it. In this section, this set is considered as a topological space in order to be able to prove the
existence of the optimal solution.

As Rubio did in [22], the set Q is endowed with weak* topology which has some benefits in
terms of the propositions that will be explained in the following sections. A weak*topology on
Q can be defined by the family of semi-norms µ 7→ |µ(F )|,∀F ∈ C(T ); it gives rise to the basis
of neighborhoods of zero in M+(T ) as follows:

Uε = {µ ∈M+(T ) : |µ(Fj)| < ε, j = 1, 2, ..., r},
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for every ε > 0 and for all the finite subsets {Fj : j = 1, 2, ..., r} of C(T ) and for every positive
integer r.

µ(bt) as a function is continuous; to show this, we present the following proposition in which
to prove it we followed Rubio in [22] chapter 2.

Proposition 1. The function µ(bt) that maps Q into the real line, is continuous in the sense
of weak*topology.

Proof. We know that function µ ∈ Q 7→ µ(bt) ≡
∫
T
bt dµ ∈ R is continuous if the inverse image

of every neighborhood of a basis of neighborhoods of µ(bt) in R, is a neighborhood of µ in Q.
This is equivalent to the fact that for every ε > 0, the set {ν ∈ Q : |(µ − ν)(bt)| < ε} is a
neighborhood of µ in Q. This follows from two facts; one is that the weak*topology on M+(T )

is defined by the neighborhoods of zero. The other one is that the neighborhoods of a point
with respect to the set Q, are the intersection of this set with the neighborhoods of the point
in M+(T ).

The following proposition helps us to prove that the solution space of (D) is computed.

Proposition 2. The set Q, defined as those measures in M+(T ) which are satisfied in (1), is
compact in the sense of weak*topology on M+(T ).

Proof. Since T is compact, for any positive number α, the set {µ : µ ∈ M+(T ), µ(1) = α} is
also compact (See [3]) (here, the function 1 equals 1 on T ) and we have µ(1) =

∫
T
dµ ≡ µ(T );

thus, the set Q is a subset of a compact set M+(T ) ≡ {µ : µ ∈ M+(T ), µ(1) = µ(T )}. Now
it is enough to prove that Q is closed; then, the fact that it is compact which follows readily.
We know that Q is defined as a set of all measures µ ∈ M+(T ) that µ(at) = c; hence, this set
is the inverse image of the singleton set {c} ⊂ Rn. Thus Q is closed by the continuity of the
function µ 7→ µ(bt) (See Proposition 1).

By considering the two above propositions, the set Q, the solution space of (D), is compact
and the objective function of (D) is a continuous function; since each upper semi-continuous
function on a nonempty compact set attains its maximum [14], the following existence theorem
can be presented.

Theorem 1. There exists an optimal positive Radon measure µ∗ in the nonempty subset Q of
M+(T ) which satisfies µ∗(bt) ≥ µ(bt) for all µ ∈ Q.

It is remarked herein that, by the above theorem, when Q ̸= ϕ, even if there is the duality
gap, the dual problem (D) has a solution. This is one of the important advantages of this method
in comparison with the others. Of course, it would be better to have a way for identifying the
optimal measure µ∗ as well, which is the main goal in the next section.
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3 Determination via the Atomic Measure

The idea of using atomic measures for a new representation of a theoretical measure optimization
problems was started by Rosenbloom in 1956 [21]. Rubio used this fact to solve the optimal
control problems in many papers such as [23, 5, 6]; they also determined the optimal control
as a piecewise constant function by using the properties of atomic measures. In addition they
have been used to determine the optimal shapes and domains (See for instance [5, 6]). Now, in
SILP we are going to introduce a new method to determine measures µ∗, the maximizer of the
functional

µ 7→ µ(bt), (2)

in the nonempty set Q of positive Radon measures on T which satisfies the equalities

µ(ai(t)) = ci, i = 1, 2, ..., n, (3)

where it is a representation of (1) since at = (a1(t), a2(t), . . . , an(t)) and c = (c1, c2, . . . , cn).
In another point of view, even the problem defined by (2) and (3) is linear according to

the unknown variable µ; however, the underlying space is an infinite dimensional one. It is
very suitable if one can develop the problem into a finite dimensional one, even approximately.
Moreover, it would be so convenient if the solution of this new problem could be able to identify
µ∗ perfectly well.

Let δ(t) be a unitary atomic measure with the support of the singleton set {t}; this means
that for each F ∈ C(T ) we have δ(t)(F ) = F (t) (See [4]). Then, by regarding a proposition
of Rosenbloom in [21], which is also mentioned in [22], the following important result can be
presented.

Proposition 3. The maximizer measure of (D), µ∗ ∈ Q, is in the form of

µ∗ =

N∑
k=1

α∗
kδ(t

∗
k), (4)

where t∗k belongs to a dense subset of T and coefficient α∗
k is positive for all k = 1, 2, ..., N .

The above proposition has allowed us to build a new formulation for problem (D) as follows
in which the coefficients α∗

k and the supporting points t∗k are unknowns:

max
∑N

k=1 α
∗
kb(t

∗
k)

subject to :
∑N

k=1 α
∗
kai(t

∗
k) = ci, i = 1, 2, ..., n;

α∗
k ≥ 0.

(5)

In the first view, it may seem that using atomic measures made the solution path very rough,
since they change the linear problems (2) and (3) into a strong nonlinear one (5). However,
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indeed, the mentioned structural result paves the way for determining the optimal solution very
easily. It is known that if (5) is maximized with respect to only the coefficients α∗

k, it would be
more convenient; this could transform the problem into a finite linear programming one. The
answer lies in approximating the supporting points by introducing a dense subset in T .

Proposition 4. Let W be a given countable dense subset of T ; then:
(i) for a given ε > 0, a measure

ν =
∑N

k=1 α
∗
kδ(tk) ∈M+(T ) (6)

can be found such that:

| (µ∗ − ν)bt |< ε , | (µ∗ − ν)ai(t) |< ε, i = 1, 2, ..., n, (7)

where the coefficients α∗
k are the same as the ones in the optimal measure (4) and tk ∈ W for

k = 1, 2, ..., N .
(ii) If N → ∞ then ν → µ∗.

Proof. To prove the first item, by using of Rubio’s method in [22] chapter 3, let fi = ai(t)

(i = 1, 2, ..., n); since the functions fi, i = 1, 2, ..., n, are continuous and the number of them is
finite, we have:

|(µ∗ − ν)fi| = |
∑N

k=1 α
∗
k(fi(t

∗
k)− fi(tk))|

≤Maxi,k|fi(t∗k)− fi(tk)||
∑N

k=1 α
∗
k|

= µ(T )Maxi,k|fi(t∗k)− fi(tk)|.

Since W is a countable dense set of T , then for a given ε > 0, by choosing tk ∈ W,k =

1, 2, ..., N , sufficiently near to t∗k, one can make Maxi,k|fi(t∗k)− fi(tk)| less than ε/µ(T ); there-
fore, the second inequalities in (7) are satisfied. Moreover, by applying the same way, one can
show that the first inequality of (7) is also satisfied.
To prove the second item, since W is a countable set, when N → ∞, we conclude that
{t1, t2, ..., tN} →W . Thus by density property of W in T , the result is deduced.

Now, a computational method for solving (5) can be presented. First, a countable dense
subset of T is chosen. Then, by selecting a finite number of elements in this set as the candidates
of supporting points of (5), the problem can be replaced by a finite linear programming one.
The optimal solution of this problem can produce a suitable near optimal solution for (D). As
a result of density property, by increasing the number of selected supporting points (N in (5)),
one can obtain an approximated solution with more precision.

In summary, we present the executive procedure of the method as the following algorithm:

Step 1: For the give primal SLIP problem (P), set up its dual problem (D);
Step 2: Choose the positive integer number N and a countable dense subset in T;
Step 3: Select N member element of W , say t1, t2, ..., tN ;
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Step 4: Set up measure ν as (7), substitute it instead of µ in (D) to construct a finite
linear programming (FLP).

Step 5: By solving the obtained FLP from Step 4, determine the optimal α∗ and the
approximation optimal value of objective function. Also, set up the near optimal measure by
(7).

We remind that by proposition 3.2., this algorithm is convergent, yet not definite in an
decreasing manner; we should emphasize that the idea of converting the problem into a finite
linear programming, is a direct application of this method. One may use some indirect tech-
niques such as artificial neural network and so on. The following examples show the way that
the new method is applied and the level of its accuracy in comparison with others.

4 Numerical Results

To describe the application of the mentioned method for solving continuous SILP problems, two
test problems are presented in this section; these problems have been used in many references
like [1, 8] as test examples to compare various presented methods for solving SILP problems.
Therefore, the reader has the opportunity to compare the obtained results from the presented
method in this paper with ones in the literatures.

Problem 1. (Example in [1, 8]) Consider the following SILP problem:

min 2x1 + x2 (P )

subject to : tx1 + (1− t)x2 ≥ t− t2, t ∈ T = [0, 1];

x ∈ R2.

By following the presented algorithm in the previous section, this problem has the following
dual form:

max
∫
T
(t− t2) dµ

subject to :
∫
T
t dµ = 2;

∫
T
(1− t) dµ = 1;

µ ∈M+(T ), µ ≥ 0.

To discretize T, 200 rational points were chosen for t in [0, 1]. Therefore, the related lin-
ear programming problem similar to (5), with 200 variables and 2 constrains was setup. This
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problem was solved by the revised simplex method using the software Maple 12. The ob-
tained optimal value of objective function is 0.66665624999994, while the actual amount of the
optimal value of the objective function is 0.6̄ as mentioned in [1, 8]. Moreover, the optimal
measure of the dual problem can be represented by µ∗ = 0.499999999982166042 δ(0.66250) +

2.50000000001770050 δ(0.66750).

Problem 2. (Example in [8]) Consider the problem of evaluating the amount of the func-
tion tan(t) for t ∈ [0, 1] = T , with respect to the polynomials of the degrees less than a given
n. It was shown in [8], that it is possible to represent this problem as the minimization of the
function c′x, where

ci =

∫ 1

0

ti−1dt = i−1, i = 1, 2, ..., n

for all the feasible polynomials pn(t) =
∑n

i=1 xit
i−1. This means that the following semi-infinite

linear problem should be solved in order to obtain the best coefficients for approximating the
function tan(t) as a linear combination of the functions 1, t, t2, t3, ..., tn−1 :

min
∑n

i=1 i
−1xi

subject to :
∑n

i=1 t
i−1xi ≥ tan(t), t ∈ [0, 1]

x ∈ Rn.

(8)

The duality of this problem in the sense of (D), which is also mentioned in [8], can be shown
as follows:

max
∫
T
(tan(t)) dµ

subject to :
∫
T
dµ = 1;

...∫
T
tn−1 dµ = 1

n ;

µ ∈M+(T ), µ ≥ 0.

(9)

To solve (9), as mentioned in the previous section, the optimal measure was considered as
µ∗ =

∑N
k=1 α

∗
kδ(t

∗
k), where t∗k ∈ T ; hence, the problem was converted to the following nonlinear

one in which its unknowns include coefficients αk and the supporting points tk’s. To determine
the optimal measure, a discretization was put on [0, 1] by dividing it to N equal sections and
then selecting a node in each subsection. In this example, the middle point of each subsection
was chosen as a node; these nodes are denoted by zi, i = 1, 2, ..., N . Thus, the following finite
LP problem was established:
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max
∑N

k=1 αk(tan(zk))

subject to :
∑N

k=1 αk = 1;

...∑N
k=1 αkz

n
k = 1

n ;

αk ≥ 0, k = 1, 2, ..., N.

It should be noted here in this rock example that, we have to select another parameter, n,
which is effective in the solution, together with the tk. This fact in agreement with the related
atomic measures may cause some switching like, in the sense of piecewise control function or
wallets, which may cause some inconvenient result (but not at all bad) in the approximation
scheme (See the 3th row of the following table); one may chose suitable n with by trial and
error. Also for a large number of N , since the huge amount of αi in the linear programming
problem (5) should be zero, the error of rounding in digital computers may cause the above-
mentioned inconvenient (such as the results of the row n = 4 in the following table, when the
result for a small number of N is more suitable). It is important to mention that numerical
works show that, for large N (more than 10000), the amount of objective function would be
fixed, which is a good reason for convergence. The problem was solved for different values of
n ∈ {2, 3, 4, ..., 8} with the revised simplex method applied by the software Maple 15. The
optimal solution for different numbers of nodes was obtained and presented in Table 1 together
with the real optimal values, which are mentioned in [8].

Table 1: Results with respect to the number iterations for problem 2.

N 5 100 100000 Op. Solution
n=2 0.77870386 0.77270618 0.77719207 0.77870386
n=3 0.64483765 0.64789969 0.64875694 0.64904209
n=4 0.63042552 0.63077503 0.63125513 0.62376961
n=5 0.61880620 0.619412723 0.61941442 0.77870386
n=6 0.61635715 0.61676698 0.61676793 0.64904209
n=7 0.61594095 0.61620649 0.61620685 0.62376961
n=8 0.61575436 0.61584115 0.61584140 0.62376961

Our computation experiments accompanied by a brief comparison with [8], reveal that
the presented method in this paper occurs sufficiently and, of course, simply; moreover, it is
important to note that such as example 1, the results are so close to the optimal solution when
we choose less points in discretizing. In addition, the optimal measure can be presented by a
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positive combination of atomic measure in the sense of (4). For instance, by assuming n = 3

and N = 200, one can obtain that:

µ∗ = 0.006218906180692209 δ(0.32750) + 0.747493734265609 δ(0.33250)

+0.25188437511706 δ(0.99750).

5 Conclusion

In this paper, a new theoretical measure view was applied to solve continuous SILP problems.
This paper, showed that measure theory is a useful methodology for dealing with SILP prob-
lems.The existence theorem indicated that in this method, if the solution space is nonempty,
then the optimal solution definitely exists, even when the duality gap exists. Moreover, it was
shown, that by applying the unitary atomic measure properties, this optimal solution could be
identified in a simple manner just by solving a finite linear programming problem, sufficiently
well. In brief, some main advantages of this new method regarded in an automatic existence
theorem, simplicity, obtaining the dual optimal solution directly independent of the primal
solution and the duality gap, and the suitable enough accuracy.

Acknowledgment: The authors incline to thank Dr M. J. Mehdipour for his help in
reviewing the analysis concepts of the paper.
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چکیده

گرفتن نظر در با دهد. می شرح را پیوسته نیمه-نامتناهی خطی مسایل حل برای سازی بهینه جدید روش یک مقاله این
جواب وجود که طوری به است شده ارایه ها اندازه نظریه در سازی بهینه مساله یک صورت به مساله ابتدا دوگان، خواص
روش یک سیمپلکس، مشهور روش از گیری بهره و اتمی های اندازه خواص پایه بر آنگاه باشد. می شده تضمین آن
عددی نتیجه چندین جدید، روش کارآیی نمایاندن منظور به است. شده ارایه بهینه نزدیک جواب تعیین برای محاسباتی

است. شده گزارش نیز

کلیدی کلمات

ضعیف*. توپولوژی متناهی، نیمه خطی ریزی برنامه رادن، اندازه خطی، ریزی برنامه اتمی، اندازه
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