
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,837 |
تعداد دریافت فایل اصل مقاله | 13,905,748 |
بررسی اثر پتانسیل تحدید کوانتومی و برهمکنش اسپین-مدار بر خواص اپتیکی یک نانوسیم چند لایه | ||
فصلنامه علمی اپتوالکترونیک | ||
مقاله 1، دوره 2، شماره 2 - شماره پیاپی 6، آذر 1396، صفحه 9-16 اصل مقاله (238.01 K) | ||
نوع مقاله: پژوهشی | ||
نویسندگان | ||
درنا نجفی1؛ بهروز واثقی* 2 | ||
1دانشگاه یاسوج | ||
2هیات علمی/ دانشگاه یاسوج | ||
چکیده | ||
در این مقاله به بررسی تأثیر پتانسیل تحدید کوانتومی روی خواص اپتیک خطی و غیرخطی یک سیم کوانتومی چند لایه در حضور برهمکنش اسپین مدار راشبا که همزمان تحت تأثیر میدانهای الکتریکی و مغناطیسی خارجی قرار دارد، خواهیم پرداخت. بدین منظور ابتدا با حل معادلهی شرودینگر، ویژهتوابع و ویژهمقادیر انرژی سیستم در حضور برهمکنش اسپین- مدار و میدانهای خارجی را محاسبه کرده و با روشهای عددی ویژهمقادیر و ویژهتوابع جدید سیستم را محاسبه میکنیم. با استفاده از ویژهتوابع و ویژهمقادیر جدید انرژی قادر خواهیم بود ضرایب جذب و شکست را محاسبه و همزمان به بررسی اثر محدودیت کوانتومی و برهمکنش اسپین- مدار در سیستم بر این خواص اپتیکی بپردازیم. | ||
کلیدواژهها | ||
نانوسیم چند لایه؛ ضریب جذب؛ ضریب شکست؛ پتانسیل تحدید کوانتومی؛ برهمکنش اسپین- مدار | ||
عنوان مقاله [English] | ||
Investigation of Quantum Confinement Potentials and Spin-Orbit Interaction on the Optical Properties of a Multi-Layer Nanowire | ||
نویسندگان [English] | ||
Dorna Najafi1؛ | ||
1Yasouj University | ||
چکیده [English] | ||
In this paper, we will study the effect of quantum confinement potential on the linear and nonlinear optical properties of a coaxial quantum wire at the presence of spin-orbit interaction and simultaneous influence of external electric and magnetic fields. To do this by solving the Schrödinger equation numerically, we calculate the energy eigenfunctions and eigenvalues of the system at the presence of spin-orbit interaction and external fields. Using the new eigenfunctions and eigenvalues, we will be able to calculate the absorption coefficient and refractive index and study the effect of quantum confinement and spin-orbit interaction on these optical properties. | ||
کلیدواژهها [English] | ||
Multi-Layer Nanowire, Absorption Coefficient, Re-fractive Index, Quantum Confinement Potential, Spin-Orbit Interaction | ||
مراجع | ||
[1] Schön J, Kloc C, Batlogg B. High-temperature superconductivity in lattice-expanded C60. Science. 2001; 293(5539): 2432-4.
[2] Rajan PI, Mahalakshmi S, Chandra S. The structural, electronic, magnetic and optical properties of the new promising spintronic material Bi 0.92 Tb 0.08 FeO 3: A first-principles approach. Computational Materials Science. 2018; 145: 244-51.
[3] Tetlow H, Gradhand M. Semiconductor spintronics: Tuning the spin Hall effect in Si. Physical Review B. 2013; 87(7): 075206.
[4] Linder J, Halterman K. Superconducting spintronics with magnetic domain walls. Physical Review B. 2014; 90(10): 104502.
[5] Splettstoesser J, Governale M, Zülicke U. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling. Physical Review B. 2003; 68(16): 165341.
[6] Sheng J, Chang K. Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions. Physical Review B. 2006; 74(23): 235315.
[7] Ding G-H, Dong B. Spin-orbit coupling effect on persistent currents in a one-dimensional quantum ring with an Anderson impurity. Physical Review B. 2007; 76(12): 125301.
[8] Sun Q-f, Xie X, Wang J. Persistent spin current in a mesoscopic hybrid ring with spin-orbit coupling. Physical review letters. 2007; 98(19): 196801.
[9] Huang G-Y, Liang S-D. Orbital magnetic phase and pure persistent spin current in spin-orbit coupling mesoscopic rings. EPL (Europhysics Letters). 2009; 86(6): 67009.
[10] Vaseghi B, Rezaei G, Malian M. Spin–orbit interaction effects on the optical properties of spherical quantum dot. Optics Communications. 2013; 287: 241-4.
[11] Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Physical Review. 1955;100(2):580.
[12] E.I. Rashba, V.I. Sheka, Sov. Phys. Solid. State, 3 (1961) 1357.
[13] Burgos R, Warnes J, De La Espriella N. Anisotropic magnetoresistance in 2DEG with Rashba spin-orbit coupling. Journal of Magnetism and Magnetic Materials. 2018; 466: 234-7.
[14] Lin X, Xu D, Jiang S, Xie F, Song M, Zhai H, et al. Graphitic carbon nitride nanocrystals decorated AgVO3 nanowires with enhanced visible-light photocatalytic activity. Catalysis Communications. 2017; 89: 96-9.
[15] Amgar D, Stern A, Rotem D, Porath D, Etgar L. Tunable length and optical properties of CsPbX3 (X= Cl, Br, I) nanowires with a few unit cells. Nano letters. 2017; 17(2): 1007-13.
[16] Boyd RW, Narum P. Slow-and fast-light: fundamental limitations. Journal of Modern Optics. 2007; 54(16-17): 2403-11.
[17] Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 1999; 397(6720): 594.
[18] S. E. Pourmand and G. Rezaie, Journal of Computational and Theorietical Nanoscience 7 (2010) 11040.
[19] Ghafari A, Vaseghi B, Rezaei G, Taghizadeh S, Karimi M. Spin-orbit interaction effects on the electronic structure of coaxial quantum well wires. Superlattices and Microstructures. 2017;101:397-404.
[20] Bloembergen N. Nonlinear optics: World Scientific; 1996.
[21] Rezaei G, Mousazadeh Z, Vaseghi B. Nonlinear optical properties of a two-dimensional elliptic quantum dot. Physica E: Low-dimensional Systems and Nanostructures. 2010; 42(5): 1477-81.
[22] Rosencher E, Bois P. Model system for optical nonlinearities: asymmetric quantum wells. Physical Review B. 1991; 44(20): 11315.
[23] Vahdani M, Rezaei G. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots. Physics Letters A. 2009; 373(34): 3079-84.
[24] Wang G, Guo K. Interband optical absorptions in a parabolic quantum dot. Physica E: Low-dimensional Systems and Nanostructures. 2005; 28(1): 14-21.
[25] Boyd RW. Nonlinear Optics, (Academic, New York, 2003). Google Scholar. 117-22.
[26] Vaseghi B, Rezaei G, Malian M. Spin–orbit interaction effects on the optical properties of spherical quantum dot. Optics Communications. 2013; 287: 241-4. | ||
آمار تعداد مشاهده مقاله: 626 تعداد دریافت فایل اصل مقاله: 431 |