
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,913 |
تعداد دریافت فایل اصل مقاله | 13,905,902 |
بررسی اثر تزریق داخل بطن مغزی مورفین و گرلین بر غلظت هورمونهای تیروئیدی (3T و 4T) در موشهای صحرایی نر | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
مقاله 7، دوره 8، شماره 4، خرداد 1399، صفحه 75-83 اصل مقاله (878.77 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2020.41409.1643 | ||
نویسندگان | ||
سینا تقویمی* 1؛ مرضیه اسدی2؛ همایون خزعلی3 | ||
1دکتری، دانشکده علوم، گروه زیستشناسی، دانشگاه شهید چمران اهواز | ||
2کارشناس ارشد، دانشکده علوم، گروه زیستشناسی، دانشگاه شهید چمران اهواز | ||
3دانشیار فیزیولوژی جانوری، دانشکده زیستشناسی، دانشگاه شهید بهشتی تهران | ||
چکیده | ||
مطالعات نشان دادند که گرلین محور هیپوتالاموس- هیپوفیز- تیروئید را مهار میکند. گرلین موجب افزایش اشتها از طریق مسیر Agouti Related Protein (AgRP) و نوروپپتید Y (NPY) و کاهش هورمونهای تیروئیدی میگردد. مورفین با اثر بر هورمونهای هیپوفیزی نظیر TSH موجب کاهش هورمونهای تیروئیدی میشود. هدف از این تحقیق بررسی تأثیر این برهمکنش بر روی میزان هورمونهای تیروئیدی میباشد. در این مطالعه 21 عدد موش صحرایی نر Wistar به وزن g 250-200 بهطور تصادفی به 3 گروه تقسیم شد. گروهها اول nmol5 گرلین، گروه دوم µg1 مورفین و گروه سوم nmol5 گرلین به همراه µg1 مورفین دریافت کردند. همه تزریقها در حجم µl3 و از طریق بطن سوم مغز انجام پذیرفت. نمونههای خونی از یک روز قبل از اولین تزریق تا یک روز پس از آخرین تزریق جمعآوری شدند و برشگیری از مغز جهت اطمینان از محل صحیح کانولگذاری صورت گرفت. پلاسمای خونی جهت تعیین میزان هورمونهای 3T و 4T بهروش Radio Immunoassay آنالیز گردید. نتایج این تحقیق نشان داد که تزریق درون بطنی گرلین و مورفین موجب کاهش معنیدار میانگین غلظت پلاسمایی هورمونهای تیروئیدی میگردد (05/0P<) و نتایج برهمکنش این دو ماده نیز باعث تقویت اثر کاهشی بر روی هورمونهای تیروئیدی است (05/0P<). گرلین و مورفین سبب کاهش معنیدار میانگینغلظتهورمونهای3T و 4T شده و تزریق همزمان این دو ماده اثر کاهشی را تقویت میکند. | ||
کلیدواژهها | ||
گرلین؛ مورفین؛ 3T و 4T | ||
عنوان مقاله [English] | ||
Effect of ICV injection of Ghrelin and morphine on T3 and T4 plasma levels in rat | ||
نویسندگان [English] | ||
Sina Taghvimi1؛ Marzieh Asadi2؛ Homayoun Khazali3 | ||
1Ph. D., Faculty of Science, Department of Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
2M. A., Faculty of Science, Department of Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
3Associate Professor of Animal Physiology, Faculty of Biology, Shahid Beheshti University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Previous studies have shown that ghrelin inhibits the activity of Hypothalamus-Pituitary-Thyroid (H-P-T) axis. It is also proved that ghrelin increases the appetite via Agouti Related Protein and neuropeptide Y Pathway, decreases T3 and T4 secretion. Also morphine by effect on Pituitary hormones like TSH decreases T3 and T4 concentrations. Thus, the goal of this study was to determine the influence of the interaction between ghrelin and morphine on thyroid hormones concentration. Twenty one male Wistar rats weighing 200-250 g were randomly divided into 3 groups. The groups received 5 nmol ghrelin, 1µg morphine or 5 nmol ghrelin together with 1µg morphine in third cerebral ventricle in volumes of 3 μl .The blood samples were collected every day. Starting one day before and up to one day after injections. Brain slices were taken to ensure that the place of the canulae was right. The plasma was analysed by Radioimmunoassay technique to determine T3 and T4 concentrations. The results showed that the i.c.v injection of ghrelin and morphine significantly decreased the mean plasma concentrations of thyroid hormones (P<0.05). Co-administration of these two substances in some of groups showed that decrease mean plasma concentrations of thyroid hormones (P<0.05). This study showed that ghrelin and morphine significantly decreased mean plasma concentration of T3 and T4. Co-administration of two substances in some of groups showed that decrease mean plasma concentration of thyroid hormones (p<0.05). | ||
کلیدواژهها [English] | ||
Ghrelin, male rat, morphine, Triiodotyronine (T3), Thyroxine (T4) | ||
مراجع | ||
Amoo-Rajabi, O.; Moghimi, A.; Khazali H. (2012). Effect of ICV injection of ghrelin and leptin on T3 and T4 plasma levels in Rat. Physiology and Pharmacology; 16(1): 70-78. Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. (2000). Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology; 141(11): 4255-4261. Easterling, K.W.; Holtzman, S.G. (2001). Central discriminative effects of morphine in rats: training via intracerebroventricular administration. Brain research bulletin; 56(6): 545-551. Ellacott, K.L.; Cone, R.D. (2004). The central melanocortin system and the integration of short-and long-term regulators of energy homeostasis. Recent progress in hormone research; 59(1): 395-408. Fekete, C.; Kelly, J.; Mihály, E.; Sarkar, S.; Rand, W.M.; Légrádi, G.B.; Emerson, C.H.; Lechan, R.M. (2001). Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology; 142(6): 2606-2613. Fekete, C.; Sarkar, S.; Rand, W.M.; Harney, J.W.; Emerson, C.H.; Bianco, A.C.; Lechan, R.M. (2002). Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology; 143(10): 3846-3853. Gholami, K.; Kesmati, M.; Kazeminejhad, R.; Zangene, F.; Rasekh, A. (2007). Diverse effects of acute and chronic administrated levothyroxine on the morphine withdrawal syndrome in male mice. Physiology and Pharmacology; 11(1): 76-81. Gosnell, B.A.; Levine, A.S.; Morley, J.E. (1983). The effects of aging on opioid modulation of feeding in rats. Life sciences; 32(24): 2793-2799. Gozashti, M.H.; Mohammadzadeh, E.; Divsalar, K.; Shokoohi, M. (2014). The effect of opium addiction on thyroid function tests. Journal of Diabetes & Metabolic Disorders; 13(1): 5. Gysling, K.; Wang, R.Y. (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain research; 277(1): 119-127. Hagan, M.M.; Rushing, P.A.; Benoit, S.C.; Woods, S.C.; Seeley, R.J. (2001). Opioid receptor involvement in the effect of AgRP-(83-132) on food intake and food selection. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology; 280(3): R814-R821. Hashimoto, H.; Fujihara, H.; Kawasaki, M.; Saito, T.; Shibata, M.; Otsubo, H.; Takei, Y.; Ueta, Y. (2007). Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology; 148(4): 1638-1647. Hayashida, T.; Nakahara, K.; Mondal, M.; Date, Y.; Nakazato, M.; Kojima, M.; Kangawa, K.; Murakami, N. (2002). Ghrelin in neonatal rats: distribution in stomach and its possible role. Journal of Endocrinology; 173(2): 239-245. Hochberg, Z.E.; Pacak, K.; Chrousos, G.P. (2003). Endocrine withdrawal syndromes. Endocrine Reviews; 24(4): 523-538. Holst, B.; Holliday, N.D.; Bach, A.; Elling, C.E.; Cox, H.M.; Schwartz, T.W. (2004). Common structural basis for constitutive activity of the ghrelin receptor family. Journal of Biological Chemistry. Iglesias, L.; Calzada, B.; Vega, J.; Hernandez, L.; Pérez-Casas, A. (1991). Effects of morphine on the pituitary-thyroid axis: morphological and analytical studies. Functional and developmental morphology; 1(4): 3-6. Kamegai, J.; Tamura, H.; Shimizu, T.; Ishii, S.; Sugihara, H.; Wakabayashi, I. (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes; 50(11): 2438-2443. Kim, M.; Small, C.; Stanley, S.; Morgan, D.; Seal, L.; Kong, W.; Edwards, C.; Abusnana, S.; Sunter, D.; Ghatei, M. (2000). The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. The Journal of clinical investigation; 105(7): 1005-1011. Konecka, A.M.; Sadowski, B.; Jaszczak, J.; Panocka, I.; Sroczynska, I. (1984). Suppression of food and water intake after intracerebroventricular infusion of morphine and naloxone in rabbits. Archives internationales de physiologie et de biochimie; 92(3): 219-226. Lawrence, C.B.; Snape, A.C.; Baudoin, F.M.-H.; Luckman, S.M. (2002). Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology; 143(1): 155-162. Mahmoudi, F.; Mohsennezhad, F.; Khazali, H.; Ehtesham, H. (2011). The effect of central injection of ghrelin and bombesin on mean plasma thyroid hormones concentration. Iranian journal of pharmaceutical research: IJPR; 10(3): 627. Mansouri, M.; Khazali, H. (2008). Determination of the effect of the interaction between Ghrelin and serotonin agonist (R)-8-OH-DPAT on the mean plasma concentrations of T3 & T4 in rat. Physiology and Pharmacology; 12(2): 142-148. Mantzoros, C.S.; Moschos, S.J. (1998). Leptin: in search of role (s) in human physiology and pathophysiology. Clinical endocrinology; 49(5): 551-567. Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. (2001). A role for ghrelin in the central regulation of feeding. Nature; 409(6817): 194. Pereira Jr, J.C.; Pradella-Hallinan, M.; Pessoa, H.D.L. (2010). Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics; 65(5): 547-554. Rauhala, P.; Männistö, P.; Tuominen, R.K. (1988). Effect of chronic morphine treatment on thyrotropin and prolactin levels and acute hormone responses in the rat. Journal of Pharmacology and Experimental Therapeutics; 246(2): 649-654. Sarkar, S.; Légrádi, G.; Lechan, R.M. (2002). Intracerebroventricular administration of α-melanocyte stimulating hormone increases phosphorylation of CREB in TRH-and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain research; 945(1): 50-59. Shintani, M.; Ogawa, Y.; Ebihara, K.; Aizawa-Abe, M.; Miyanaga, F.; Takaya, K.; Hayashi, T.; Inoue, G.; Hosoda, K.; Kojima, M. (2001). Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes; 50(2): 227-232. Wang, L.; Saint-Pierre, D.H.; Taché, Y. (2002). Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neuroscience letters; 325(1): 47-51. Williams, J.T.; Christie, M.J.; Manzoni, O. (2001). Cellular and synaptic adaptations mediating opioid dependence. Physiological reviews; 81(1): 299-343. Wren, A.M.; Small, C.J.; Abbott, C.R.; Dhillo, W.S.; Seal, L.J.; Cohen, M.A.; Batterham, R.L.; Taheri, S.; Stanley, S.A.; Ghatei, M.A. (2001). Ghrelin causes hyperphagia and obesity in rats. Diabetes; 50(11): 2540-2547. | ||
آمار تعداد مشاهده مقاله: 448 تعداد دریافت فایل اصل مقاله: 377 |