
تعداد نشریات | 41 |
تعداد شمارهها | 1,143 |
تعداد مقالات | 9,835 |
تعداد مشاهده مقاله | 18,108,649 |
تعداد دریافت فایل اصل مقاله | 12,655,133 |
تحلیل قابلیت ادغام مدلسازی اطلاعات ساختمان (BIM) و هوش مصنوعی در معماری با رویکرد ردیابی نظاموار منابع علمی در دوره 2021-2015 | ||
برنامه ریزی توسعه کالبدی | ||
دوره 10، شماره 4 - شماره پیاپی 32، اسفند 1402، صفحه 111-134 اصل مقاله (2.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/psp.2024.67927.2673 | ||
نویسندگان | ||
محمد امان زادگان1؛ یعقوب پیوسته گر* 2؛ علی اکبر حیدری3؛ راضیه ملک حسینی4 | ||
1دانشجوی دکتری معماری، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران | ||
2دانشیار گروه معماری و شهرسازی، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران | ||
3استادیار معماری، دانشکده فنی و مهندسی دانشگاه یاسوج، یاسوج، ایران | ||
4استادیار گروه مهندسی کامپیوتر، واحد یاسوج، دانشگاه آزاد اسلامی، یاسوج، ایران | ||
چکیده | ||
مدلسازی اطلاعات ساختمان (BIM) صنعت ساختوساز را با بهبود کارایی و سادهسازی روشهای پروژه ساختمان متحول ساخته است.ادغام BIM با سیستمهای دیجیتالی همچون هوشمصنوعی (AI) ، موانع را از بین برده و چرخه عمر پروژه را سازندهتر و سودمندتر میسازد. مزایای BIM و AI فراتر از مدلسازی سه بعدی و طرحهای ساختمانی است. آنها کل چرخه عمر پروژه ساختوساز را از صفر به بعد مدیریت و کنترل میکنند. هدف این پژوهش ارائه درک جامع از روند ادغام AI-BIM است که توسط محققان مختلف در سراسر جهان انجام شده است. دستیابی به این هدف از طریق تحلیل نظام وار 380 مقاله انتشار یافته در سالهای 2015-2021 از طریق پایگاه استنادی اسکوپوس است این پژوهش مروری نظام وار از تحقیقات کیفی را برای تشخیص ویژگیهای BIM، AI، ادغام و پیادهسازی آنها در ساختوساز ارائه میکند. همچنین روندها و بینشهای تحقیقاتی آینده را ارائه داده و بر قابلیت همکاری در BIM تأکید میکند. در بخش دیگر، نیاز به تحقیقات آینده را برای تمرکز بر قابلیت همکاری هوشمصنوعی و سایر سیستمهای هوشمند در BIM را برای تقویت علم یکپارچه بر اساس دیجیتالی شدن و فناوری اطلاعات و ارتباطات تقویت می سازد.در نهایت گسترش یافته ها را نیز در طول چرخه عمر پروژه ساختوساز ساختمان برجسته میکند. نتایج تحلیل نظام وار دراین تحقیق نشان میدهد که ادغام هوشمصنوعی و BIM ظرفیت تغییر صنعت ساختوساز را در بر دارد. زیرا توانایی کاهش قابل توجهی از خطاها ،صرفه جویی در زمان و منابع (نیروی انسانی و مصالح ساختمانی) ، افزایش بهرهوری و متناسب سازی نقشه را بر اساس نیاز کاربر با استفاده از سه ماژول کنترل کننده، پایگاه داده و یادگیری ماشین و با توجه به مقررات ساختمانی را دارد. این پژوهش همچنین برخی از چالشهایی مانع از ادغام هوشمصنوعی و BIM را همچون فقدان استانداردهای قابلیت همکاری، نگرانیهای مربوط به حریم خصوصی دادهها و آموزش ناکافی برای متخصصان را شناسایی میکند. | ||
کلیدواژهها | ||
BIM؛ هوشمصنوعی؛ صنعت ساختوساز؛ BIM به کمک هوشمصنوعی؛ یادگیری ماشین | ||
عنوان مقاله [English] | ||
Analysis of the Ability to Integrate Building Information Modeling (BIM) and Artificial Intelligence in Architecture with the Approach of Systematic Tracking of Scientific Resources in the Period of 2015-2021 | ||
نویسندگان [English] | ||
Mohammad Amanzadegan1؛ Yaghowb Peyvastehgar2؛ Ali Akbar Heidari3؛ Razieh Malekhosseini4 | ||
1PhD Student in Architecture, Yasuj Branch, Islamic Azad University, Yasuj, Iran | ||
2Associate Professor of Architecture and Urban Planning, Yasuj Branch, Islamic Azad University, Yasuj, IRAN | ||
3Assistant Professor of Architecture, Faculty of Technical and Engineering, Yasouj University, Yasouj, IRAN | ||
4Assistant Professor of Computer, Department of Computer Engineering, Yasuj Branch, Islamic Azad University, Yasuj, Iran | ||
چکیده [English] | ||
Building Information Modeling (BIM) has revolutionized the construction industry by improving efficiency and simplifying building project methods. Integrating BIM with digital systems such as artificial intelligence (AI) removes barriers and makes the project life cycle more productive and beneficial. The benefits of BIM and AI go beyond 3D modeling and building plans. They manage and control the entire construction project life cycle from start to the end. The aim of the current research is to provide a comprehensive understanding of the process of AI-BIM integration, which has been carried out by various researchers around the world. To achieve this goal, 380 articles published in 2015-2021 have been systematically analyzed through Scopus reference database. This research presents a systematic review of qualitative research to identify the characteristics of BIM, AI, their integration and implementation in construction. It also provides future research trends and insights and emphasizes interoperability in BIM. On the other hand, it reinforces the need for future research to focus on the interoperability of artificial intelligence and other intelligent systems in BIM to foster integrated science based on digitalization and information and communication technology. Finally, it also highlights the extension of the findings during the life cycle of the building construction project. The research results show that the integration of artificial intelligence and BIM has the capacity to change the construction industry. Because it has the ability to significantly reduce errors, to save time and resources (human resources and construction materials), to increase productivity and to adapt the map based on the user's needs through controller modules, database and machine learning according to building regulations. This research also identifies some of the challenges hindering the integration of AI and BIM, such as the lack of interoperability standards, data privacy concerns, and insufficient training for professionals. | ||
کلیدواژهها [English] | ||
BIM, Artificial Intelligence, Construction Industry, AI-assisted BIM, Machine Learning | ||
مراجع | ||
Ahn, J., Ji, S. H., Ahn, S. J., Park, M., Lee, H. S., Kwon, N., Lee, E. B., & Kim, Y. (2020). Performance evaluation of normalization-based CBR models for improving construction cost estimation. Automation in Construction, 119, 103329. https://doi.org/10.1016/j.autcon.2020.103329 Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Oyedele, A. A., Akinade, O. O., Bilal, M., & Ajayi, S. O. (2017). Critical factors for insolvency prediction: towards a theoretical model for the construction industry. International Journal of Construction Management, 17(1), 25–49. https://doi.org/10.1080/15623599.2016.1166546 Al-Ashmori, Y. Y., Othman, I., Rahmawati, Y., Amran, Y. H. M., Sabah, S. H. A., Rafindadi, A. D. u., & Mikić, M. (2020). BIM benefits and its influence on the BIM implementation in Malaysia. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2020.02.002 Ansah, M. K., Chen, X., Yang, H., Lu, L., & Lam, P. T. I. (2019). A review and outlook for integrated BIM application in green building assessment. Sustainable Cities and Society, 48(February), 101576. https://doi.org/10.1016/j.scs.2019.101576 Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and Management in Engineering, 11(3), 241–252. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127 Bloch, T., Sacks, R., & Rabinovitch, O. (2016). Interior models of earthquake damaged buildings for search and rescue. Advanced Engineering Informatics, 30(1), 65–76. https://doi.org/10.1016/j.aei.2015.12.001 Bui, N., Merschbrock, C., & Munkvold, B. E. (2016). A Review of Building Information Modelling for Construction in Developing Countries. Procedia Engineering, 164(1877), 487-494. https://doi.org/10.1016/j.proeng.2016.11.649. Charef, R., Alaka, H., & Emmitt, S. (2018). Beyond the third dimension of BIM: A systematic review of literature and assessment of professional views. Journal of Building Engineering, 19, 242–257. https://doi.org/10.1016/j.jobe.2018.04.028 Chen, K., Lu, W., Peng, Y., Rowlinson, S., & Huang, G. Q. (2015). Bridging BIM and building: From a literature review to an integrated conceptual framework. International Journal of Project Management, 33(6), 1405– 1416. https://doi.org/10.1016/j.ijproman.2015.03.006 Chong, H. Y., Lee, C. Y., & Wang, X. (2017). A mixed review of the adoption of Building Information Modelling (BIM) for sustainability. Journal of Cleaner Production, 142, 4114–4126. https://doi.org/10.1016/j.jclepro.2016.09.222 Darko, A., Chan, A. P. C., Yang, Y., & Tetteh, M. O. (2020). Building information modeling (BIM)-based modular integrated construction risk management – Critical survey and future needs. Computers in Industry, 123, 103327. https://doi.org/10.1016/j.compind.2020.103327 Farzaneh, A., Monfet, D., & Forgues, D. (2019). Review of using Building Information Modeling for building energy modeling during the design process. Journal of Building Engineering, 23, 127-135. https://doi.org/10.1016/j.jobe.2019.01.029 Farzaneh, H., Malehmirchegini, L., Bejan, A., Afolabi, T., Mulumba, A., & Daka, P. P. (2021). Artificial intelligence evolution in smart buildings for energy efficiency. Applied Sciences (Switzerland). 11(2). 1–26. https://doi.org/10.3390/app11020763 Ferrando, M., Causone, F., Hong, T., & Chen, Y. (2020). Urban building energy modeling (UBEM) tools: A state- of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society. 62. 102408. https://doi.org/10.1016/j.scs.2020.102408 Gao, X., & Pishdad-Bozorgi, P. (2019). BIM-enabled facilities operation and maintenance: A review. Advanced Engineering Informatics. 39. 227–247. https://doi.org/10.1016/j.aei.2019.01.005 Garwood, T. L., Hughes, B. R., Oates, M. R., O’Connor, D., & Hughes, R. (2018). A review of energy simulation tools for the manufacturing sector. Renewable and Sustainable Energy Reviews, 81(1). 895– 911. https://doi.org/10.1016/j.rser.2017.08.063 Gilner, E., Galuszka, A., & Grychowski, T. (2019). Application of Artificial Intelligence Methods in Sustainable Building Design. Computational Science and Its Applications, ICCSA 2019 Lecture Notes in Computer Science. 408-417. DOI: 10.1007/978-3-030-24289-3_30 Grilo, A., & Jardim-Goncalves, R. (2010). Value proposition on interoperability of BIM and collaborative working environments. Automation in Construction, 19(5). 522–530. https://doi.org/10.1016/j.autcon.2009.11.003 Haymaker, J. R. (2011). Opportunities for AI to improve sustainable building design processes. AAAI Spring Symposium Artificial Intelligence and Sustainable Design - Technical Report: SS-11-02. Huang, M.Q., Nini´c, J., & Zhang, Q.B. (2021). BIM, machine learning and computer vision techniques in underground construction. Tunnelling and Underground Space Technology. 108. 103443. https://doi.org/10.1016/j.tust.2020.103677 Jackson, R. H. G., & Wood, A. (2013). The performance of insolvency prediction and credit risk models in the UK: A comparative study. The British Accounting Review. 45(3), 183–202. https://doi.org/10.1016/j.bar.2013.06.009 Kamel, E., & Memari, A. M. (2019). Review of BIM’s application in energy simulation: Tools, issues, and solutions. Automation in Construction, 97. 164–180. https://doi.org/10.1016/j.autcon.2018.11.008 Li, C. Z., Lai, X., Xiao, B., Tam, V. W. Y., Guo, S., & Zhao, Y. (2020). A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019. Renewable and Sustainable Energy Reviews, 134(2020), 110372. https://doi.org/10.1016/j.rser.2020.110372 Li, J., Afsari, K., Li, N., Peng, J., Wu, Z., & Cui, H. (2020). A review for presenting building information modeling education and research in China. Journal of Cleaner Production, 259, 120885. https://doi.org/10.1016/j.jclepro.2020.120885 Li, Y. (2019). The Application of BIM in Artificial Intelligence Management of Construction Engineering Database Project. Iwmecs, 344–349. DOI: 10.25236/iwmecs.2019.068 Manoj Philip, A., & Ramesh Kannan, M. (2021). Constructability assessment of cast in-situ, precast and modular reinforced concrete structures. Materials Today: Proceedings. 45(7), 6011-6015. https://doi.org/10.1016/j.matpr.2020.09.528. NBS (National BIM Survey). (2016). National BIM Report. 1–31. https://www.thenbs.com/knowledge/national-bim-report-2016 Obradovic, D. (2019). Active BIM : Review of Accomplishments, Challenges and Potentials. 7th IPMA Research Conference and the 14th International OTMC. https://www.researchgate.net/publication/335685423 Oraee, M., Hosseini, M. R., Edwards, D. J., Li, H., Papadonikolaki, E., & Cao, D. (2019). Collaboration barriers in BIM-based construction networks: A conceptual model. International Journal of Project Management, 37(6), 839–854. Othman, I., Al-Ashmori, Y. Y., Rahmawati, Y., Mugahed Amran, Y. H., & Al-Bared, M. A. M. (2020). The level of Building Information Modelling (BIM) Implementation in Malaysia. Ain Shams Engineering Journal. https://doi.org/10.1016/j.ijproman.2019.05.004 OZTURK, G. B., & TUNCA, M. (2020). Artificial Intelligence in Building Information Modeling Research: Country and Document-based Citation and Bibliographic Coupling Analysis. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 16(3). 269-279. DOI: 10.18466/cbayarfbe.770565 Pan, Y., & Zhang, L. (2020). BIM log mining: Learning and predicting design commands. Automation in Construction, 112(October 2019). Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Automation in Construction, 122. https://doi.org/10.1016/j.autcon.2020.103517 Pujitha, K. S. V. S., & Venkatesh, K. (2020). Forecasting the construction cost by using unit-based estimation model. Materials Today: Proceedings, 33(1), 613–619. https://doi.org/10.1016/j.matpr.2020.05.546 Ramaji, I. J., Messner, J. I., & Leicht, R. M. (2016). Leveraging building information models in IFC to perform energy analysis in openstudio®. ASHRAE and IBPSA-USA Building Simulation Conference, 251– 258. https://www.researchgate.net/publication/308260599 Sabol, L. (2013). BIM Technology for FM. In: Teicholz, P. (ed.) BIM for Facility Managers, 1st edn., 17–45. John Wiley & Sons, New Jersey. https://doi.org/10.1002/9781119572633.ch2 Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). BIM Handbook A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. 3rd Edition. Wiley. 1–688. ISBN: 978-1-119-28755-1 Sacks, R., Girolami, M., & Brilakis, I. (2020). Building Information Modelling, Artificial Intelligence and Construction Tech. Developments in the Built Environment, 4. https://doi.org/10.1016/j.dibe.2020.100011 Shirowzhan, S., Sepasgozar, S. M. E., Edwards, D. J., Li, H., & Wang, C. (2020). BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Automation in Construction. 112. https://doi.org/10.1016/j.autcon.2020.103086 Singh, V., Gu, N., & Wang, X. (2011). A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Automation in Construction, 20(2), 134–144. https://doi.org/10.1016/j.autcon.2010.09.011. Steel, J., Drogemuller, R., & Toth, B. (2012). Model interoperability in building information modelling. Software and Systems Modeling, 11(1), 99–109. https://doi.org/10.1007/s10270-010-0178-4 Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., & Gao, X. (2019). A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. Automation in Construction, 101(66), 127–139. DOI: 10.1016/j.autcon.2019.01.020 Tashakkori, H., Rajabifard, A., & Kalantari, M. (2015). A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Building and Environment, 89, 170–182. https://doi.org/10.1016/j.buildenv.2015.02.036 Tsoukalas, V. D., & Fragiadakis, N. G. (2016). Prediction of occupational risk in the shipbuilding industry using multivariable linear regression and genetic algorithm analysis. Safety Science, 83, 12-22. https://doi.org/10.1016/j.ssci.2015.11.010 Utkucu, D., & Sözer, H. (2020). Wang, S.-H., Wang, W.-C., Wang, K.-C., & Shih, S.-Y. (2015). Applying building information modeling to support fire safety management. Automation in Construction, 59, 158–167. https://doi.org/10.1016/j.autcon.2015.02.001 Wetzel, E. M., & Thabet, W. Y. (2016). Utilizing Six Sigma to develop standard attributes for a Safety for Facilities Management (SFFM) framework. Safety Science, 89(4), 355–368. DOI: 10.1016/j.ssci.2016.07.010 Xu, X., Mumford, T., & Zou, P. X. W. (2021). Life-cycle building information modelling (BIM) engaged framework for improving building energy performance. Energy and Buildings, 231(7). DOI: 10.1016/j.enbuild.2020.110496 | ||
آمار تعداد مشاهده مقاله: 1,155 تعداد دریافت فایل اصل مقاله: 386 |