
تعداد نشریات | 41 |
تعداد شمارهها | 1,162 |
تعداد مقالات | 10,022 |
تعداد مشاهده مقاله | 18,743,350 |
تعداد دریافت فایل اصل مقاله | 13,012,653 |
اثرات وابسته به زمان نیکوتین بر گلوکز، آلبومین، اوره، اسیداوریک سرم و بافتشناسی کبد در موش صحرایی | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
دوره 13، شماره 2 - شماره پیاپی 50، اسفند 1403، صفحه 67-75 اصل مقاله (1012.55 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2025.72323.1965 | ||
نویسندگان | ||
پریناز حاجی یوسفی پور؛ مهدی بساکی* ؛ داوود کیانی فرد؛ یوسف پناهی؛ مهری انیسی | ||
گروه علوم پایه، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
نیکوتین یک آلکالوئید طبیعی و عامل اصلی اعتیاد به دخانیات است. نیکوتین با اتصال به گیرندههای نیکوتینی استیلکولین (nAChRs) مغز را تحریک میکند، فشار خون و ضربان قلب را افزایش میدهد، سرعت متابولیسم را افزایش میدهد، اشتها را سرکوب میکند و وزن بدن را تنظیم میکند. نیکوتین باعث کاهش وزن، نشت آنزیم، پراکسیداسیون لیپیدی و استرس اکسیداتیو کبد میشود. برای بررسی زمانی اثرات نیکوتین بر عملکرد کبد روزانه نیکوتین (mg/kg 2) بهصورت داخل صفاقی به موشها تزریق شد. 40 نمونه خون در چهار مرحله زمانی، بهعنوان چهار گروه مستقل، قبل از تزریق نیکوتین و 30 دقیقه، یک هفته و چهار هفته پس از اولین تزریق نیکوتین گرفته شد. گلوکز، آلبومین، اوره و اسید اوریک سرم با روشهای استاندارد اندازهگیری شد. پس از چهار هفته تجویز نیکوتین، نمونههای کبد در محلول فرمالدئید 10 درصد تثبیت شدند و قطر ورید مرکزی، هپاتوسیت و سینوزوئید و ضخامت کپسول کبد اندازهگیری شد. تجویز کوتاهمدت و بلند مدت نیکوتین گلوکز و آلبومین سرم را کاهش داد. تجویز فوری، کوتاهمدت و طولانیمدت نیکوتین اوره و اسید اوریک سرم را کاهش داد. قطر سلولهای کبدی و سینوزوئیدها پس از چهار هفته تجویز نیکوتین افزایش یافت. نیکوتین با مکانیسمهای تنظیمی مختلف سنتز کبدی گلوکز، آلبومین، اوره و اسید اوریک را بهصورت وابسته به زمان کاهش میدهد. بررسی اثرات نیکوتین بر ژنها و آنزیمهای دخیل در متابولیسم کبد بهروشنترشدن مکانیسمهای مولکولی اثرات نیکوتین کمک خواهد کرد. | ||
کلیدواژهها | ||
نیکوتین؛ گلوکز؛ آلبومین؛ اوره؛ اسید اوریک؛ کبد | ||
عنوان مقاله [English] | ||
Time-dependent effects of nicotine on serum glucose, albumin, urea, uric acid, and liver histology in rat | ||
نویسندگان [English] | ||
Parinaz Hajiyousefipour؛ Mehdi Basaki؛ Davoud Kianifard؛ Yousef Panahi؛ Mehri Anisi | ||
Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran | ||
چکیده [English] | ||
Nicotine is a natural alkaloid and the primary cause of tobacco addiction. Nicotine stimulates the brain, raises blood pressure and heart rate, increases metabolic rate, suppresses appetite, and regulates body weight through binding to nicotinic acetylcholine receptors (nAChRs). Nicotine causes weight loss, enzyme leakage, lipid peroxidation, and oxidative stress in the liver. To investigate the time-dependent effects of nicotine on liver function rats were injected intraperitoneally daily with of nicotine (2 mg/kg). Forty blood samples were taken at four stages, as four independent groups, before nicotine administration and 30 minutes, one week, and four weeks after the first nicotine administration. Serum glucose, albumin, urea, and uric acid were measured by standard methods. After four weeks of nicotine administration, liver samples were fixed in a 10% formaldehyde solution, and diameters of the central vein, hepatocyte, and sinusoid and thickness of the liver capsule were measured. Short and long-term nicotine administration decreased serum glucose and albumin. Serum urea and uric acid decreased following immediate, short-term, and long-term nicotine administration. Also, the diameter of hepatocytes and sinusoids increased after four weeks of nicotine administration. Nicotine reduces hepatic synthesis of glucose, albumin, urea, and uric acid time-dependently through various regulatory mechanisms. Investigating nicotine's effects on the genes and enzymes involved in liver metabolism will help to clarify the molecular mechanisms of nicotine's effects. | ||
کلیدواژهها [English] | ||
Nicotine, glucose, albumin, urea, uric acid, liver | ||
مراجع | ||
Abushofa, F. A., Azab, A. E., & Alkadrawy, S. (2019). Hepatic pathophysiological changes induced by nicotine and/or sodium nitrite injection in male albino rats. East African Scholars J Med Sci, 2(4), 184-196.
Albasha, M., & Azab, A. (2016). Hepatorenal protective effects of pomegranate (Punica granatum) Juice against nicotine induced toxicity in Guinea pigs. Journal of Advances in Biology & Biotechnology, 5(1), 1-13.
Alkam, T., & Nabeshima, T. (2019). Molecular mechanisms for nicotine intoxication. Neurochemistry international, 125, 117-126.
Alrouji, M., Manouchehrinia, A., Aram, J., Alotaibi, A., Alhajlah, S., Almuhanna, Y., ... Constantinescu, C. S. (2023). Investigating the Effect of Cigarette Smoking on Serum Uric Acid Levels in Multiple Sclerosis Patients: A Cross Sectional Study. Brain Sciences, 13(5), 800.
Bafageeh, W.A., & Abdelaziza, S.A. (2019). Ameliorative Effect of Quercetin and Luteolin Supplements on Histology of Liver and Lungs Intoxicated with Nicotine in Young Rats. International Journal of Pharmaceutical Research & Allied Sciences, 8(2).
Battah, K. A., Badranc, D. H., & Shraideh, Z. A. (2016). Effect of Cigarette Smoking on the Structure of Hepatocytes: TEM Study. International Journal of Morphology, 34(4).
Beheshtipour, J., Raeeszadeh, M., & Jamali, R. (2018). The study of the effect of Medicago sativa hydroalcoholic extract on nicotine-induced liver damage in male Wistar rats. SSU_Journals, 25(10), 759-769.
Ben Saad, A., Ncib, S., Rjeibi, I., Saidi, I., & Zouari, N. (2019). Nephroprotective and antioxidant effect of green tea (Camellia sinensis) against nicotine-induced nephrotoxicity in rats and characterization of its bioactive compounds by HPLC–DAD. Applied Physiology, Nutrition, and Metabolism, 44(11), 1134-1140.
Bhattacharjee, A., Prasad, S. K., Pal, S., Maji, B., Syamal, A. K., & Mukherjee, S. (2016). Synergistic protective effect of folic acid and vitamin B12 against nicotine-induced oxidative stress and apoptosis in pancreatic islets of the rat. Pharmaceutical biology, 54(3), 433-444.
Eid, H. A., Moazen, E. M., Elhussini, M., Shoman, H., Hassan, A., Elsheikh, A., ... Kabil, A. (2022). The influence of smoking on renal functions among apparently healthy smokers. Journal of Multidisciplinary Healthcare, 2969-2978.
Fanning, N., Merriman, T. R., Dalbeth, N., & Stamp, L. K. (2018, June). An association of smoking with serum urate and gout: a health paradox. In Seminars in arthritis and rheumatism (Vol. 47, No. 6, pp. 825-842). WB Saunders.
Grøndahl, M. F., Bagger, J. I., Lund, A., Faurschou, A., Rehfeld, J. F., Holst, J. J., ... Knop, F. K. (2018). Effects of smoking versus nonsmoking on postprandial glucose metabolism in heavy smokers compared with nonsmokers. Diabetes Care, 41(6), 1260-1267.
Gui, X., Yang, Z., & Li, M. D. (2021). Effect of cigarette smoke on gut microbiota: state of knowledge. Frontiers in Physiology, 12, 673341.
Harris, K. K., Zopey, M., & Friedman, T. C. (2016). Metabolic effects of smoking cessation. Nature Reviews Endocrinology, 12(5), 299-308.
Hosseini, E. (2012). The Effect of Nicotine on the Serum Level of Glucagon and Glucose in Adult Male Rats. 33-39.
Jalili, C., Salahshoor, M. R., Moradi, M. T., Ahookhash, M., Taghadosi, M., & Sohrabi, M. (2017). Expression changes of apoptotic genes in tissues from mice exposed to nicotine. Asian Pacific journal of cancer prevention: APJCP, 18(1), 239.
Jalili, C., Tabatabaei, H., Kakaberiei, S., Roshankhah, S., & Salahshoor, M. R. (2015). Protective role of Crocin against nicotine-induced damages on male mice liver. International journal of preventive medicine, 6.
Khaled, S., Makled, M. N., & Nader, M. A. (2020). Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life sciences, 260, 118426.
Kim, S.-K., & Choe, J.-Y. (2019). Association between smoking and serum uric acid in Korean population: data from the seventh Korea national health and nutrition examination survey 2016. Medicine, 98(7).
Lee, P. N., & Fariss, M. W. (2017). A systematic review of possible serious adverse health effects of nicotine replacement therapy. Archives of toxicology, 91(4), 1565-1594.
Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P., & Garg, A. (2015). Harmful effects of nicotine. Indian journal of medical and paediatric oncology: official journal of Indian Society of Medical & Paediatric Oncology, 36(1), 24.
Mohamed, H. A., El-Rhmana, A., & Hassan, E. (2021). Ameliorative Effect of Chitosan on Nicotine Toxicity in Diabetic Rats. Journal of Scientific Research in Science, 38(part 2 (Biological Sciences)), 197-222.
Mouhamed, D. H., Ezzaher, A., Neffati, F., Douki, W., Gaha, L., & Najjar, M. F. (2016, February). Effect of cigarette smoking on insulin resistance risk. In Annales de Cardiologie et d'Angéiologie (Vol. 65, No. 1, pp. 21-25). Elsevier Masson.
Murphy, S.E. (2021). Biochemistry of nicotine metabolism and its relevance to lung cancer. Journal of Biological Chemistry, 296.
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy, 7(2), 27.
Nasrin, S., Coates, S., Bardhi, K., Watson, C., Muscat, J. E., & Lazarus, P. (2023). Inhibition of nicotine metabolism by cannabidiol (CBD) and 7-Hydroxycannabidiol (7-OH-CBD). Chemical research in toxicology, 36(2), 177-187.
Obembe, O., Ukwenya, V., Ige, A., Oyeyipo, I., & Fasanmade, A. (2021). Effects of prenatal exposure to passive cigarrette smoke and nicotine on nitric oxide and blood glucose levels of rats. International Journal of Biomedical and Health Sciences, 6(4).
Raeeszadeh, M., Beheshtipour, J., Jamali, R., & Akbari, A. (2022). The antioxidant properties of alfalfa (Medicago sativa L.) and its biochemical, antioxidant, anti‐inflammatory, and pathological effects on nicotine‐induced oxidative stress in the rat liver. Oxidative Medicine and Cellular Longevity, 2022(1), 2691577.
Ramalingam, A., Santhanathas, T., Shaukat Ali, S., & Zainalabidin, S. (2019). Resveratrol supplementation protects against nicotine-induced kidney injury. International journal of environmental research and public health, 16(22), 4445.
Roohi, N., & Mehjabeen, S.A. (2017). Effects of cigarette smoking on serum proteins profile in male active and passive smokers. Punjab Univ. J. Zool, 32(2), 209-215.
Rumora, L., Hlapčić, I., Popović-Grle, S., Rako, I., Rogić, D., & Čepelak, I. (2020). Uric acid and uric acid to creatinine ratio in the assessment of chronic obstructive pulmonary disease: Potential biomarkers in multicomponent models comprising IL-1beta. PLoS One, 15(6), e0234363.
Salahshoor, M. R., Roshankhah, S., Farokhi, M., & Jalili, C. (2019). Harmine shows therapeutic activity on nicotine-induced liver failure in mice.
Sansone, L., Milani, F., Fabrizi, R., Belli, M., Cristina, M., Zagà, V., ... Russo, P. (2023). Nicotine: from discovery to biological effects. International Journal of Molecular Sciences, 24(19), 14570.
Sari, M. I., Sari, N., Darlan, D. M., & Prasetya, R. J. (2018). Cigarette smoking and hyperglycaemia in diabetic patients. Open access Macedonian journal of medical sciences, 6(4), 634.
Seitz, H. K., Moreira, B., & Neuman, M. G. (2023). Pathogenesis of Alcoholic Fatty Liver a Narrative Review. Life, 13(8), 1662.
Seoane-Collazo, P., Diéguez, C., Nogueiras, R., Rahmouni, K., Fernández-Real, J. M., & López, M. (2020). Nicotine’actions on energy balance: Friend or foe? Pharmacology & therapeutics, 107693.
Sridharan, G., Babu, K. L., Ganapathy, D., Atchudan, R., Arya, S., & Sundramoorthy, A.K. (2023). Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using phyllanthus reticulatus fruit extract. Crystals, 13(4), 589.
Tsuneki, H., Nagata, T., Fujita, M., Kon, K., Wu, N., Takatsuki, M., ... Yanagisawa, M. (2016). Nighttime administration of nicotine improves hepatic glucose metabolism via the hypothalamic orexin system in mice. Endocrinology, 157(1), 195-206.
Ugbor, C., Okonkwo, L., Okonkwo, N., & Duhu, N. (2019). Acute Effect of Tobacco Snuff Consumption on Plasma Total Protein, Albumin, Globulin and Fasting Blood Sugar Level in Rats. Asian Journal of Medicine and Health, 1-6.
Vu, C. U., Siddiqui, J. A., Wadensweiler, P., Gayen, J. R., Avolio, E., Bandyopadhyay, G. K., ... Mahata, S. K. (2014). Nicotinic acetylcholine receptors in glucose homeostasis: the acute hyperglycemic and chronic insulin-sensitive effects of nicotine suggest dual opposing roles of the receptors in male mice. Endocrinology, 155(10), 3793-3805.
Wang, W., & Krishnan, E. (2015). Cigarette smoking is associated with a reduction in the risk of incident gout: results from the Framingham Heart Study original cohort. Rheumatology, 54(1), 91-95. | ||
آمار تعداد مشاهده مقاله: 48 تعداد دریافت فایل اصل مقاله: 27 |