
تعداد نشریات | 41 |
تعداد شمارهها | 1,184 |
تعداد مقالات | 10,192 |
تعداد مشاهده مقاله | 19,148,921 |
تعداد دریافت فایل اصل مقاله | 13,260,054 |
Optimal Control of Linear Singularly Perturbed Systems via Eigenvalue Assignment | ||
Control and Optimization in Applied Mathematics | ||
مقاله 1، دوره 10، شماره 1 - شماره پیاپی 19، شهریور 2025، صفحه 1-17 اصل مقاله (615.2 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2025.73999.1294 | ||
نویسندگان | ||
Mehrnoosh Salehi Chegeni؛ Majid Yarahmadi* | ||
Department of Mathematics and Computer Science, Lorestan University, Lorestan, Iran. | ||
چکیده | ||
Optimal control of certain singularly perturbed systems, with slow and fast dynamics, presents notable challenges, including ill-conditioning, high dimensionality, and ill-posed algebraic Riccati equations. In this paper, we introduce a novel inverse optimal control method based on the eigenvalue assignment approach to address these issues. The proposed method optimizes the objective function while ensuring system stability through the strategic placement of eigenvalues in the singular perturbed closed-loop system. To facilitate analysis and support the implementation, a new theorem is proved, and a corresponding algorithm is developed. The proposed algorithm is free of ill-conditioned numerical problems, making it more robust in terms of numerical diffusion and perturbation measurement. Finally, two simulation examples are presented to illustrate the advantages of the proposed method, demonstrating improvement in controller robustness, substantial reductions in cost functions, and decreased control amplitudes. | ||
تازه های تحقیق | ||
| ||
کلیدواژهها | ||
Singularly Perturbed Systems؛ Optimal Control؛ Eigenvalue Placement؛ Certainty Matrix | ||
مراجع | ||
[1] Baleanu, D., Hajipour, M., Jajarmi, A. (2024).“An accurate finite difference formula for the numerical solution of delay-dependent fractional optimal control problems”, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 183–192, doi:10.11121/ijocta.1478. [2] Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D. (2019). “A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(8):083127, doi:10.1063/1.5096159. [3] Chow, J., Kokotovic, P. (1976). “A decomposition of near-optimum regulators for systems with slow and fast modes”, IEEE Transactions on Automatic Control, 21(5), 701-705, doi:10.1109/TAC.1976.1101342. [4] Daraghmeh, A., Qatanani, N., Hartmann, C. (2018). “Optimal control of linear systems with balanced reduced-order models: Perturbation approximations”, Applied Mathematics and Computation, 337, 119-136, doi:10.1016/j.amc.2018.04.065. [5] Datta, K.B., RaiChaudhuri. A. (2002). “H2/H∞ control of singularly perturbed systems: The state feedback case”, European Journal of Control, 38(10), 1791-1797, doi:10.1016/S0005-1098(02)00090-0. [6] Ebrahimipour, M., Mirhosseini-Alizamini, S.M. (2024). “Optimal adaptive sliding mode control for a class of nonlinear affine systems”, Control and Optimization in Applied Mathematics, 9(2), 123-138, doi:10.30473/coam.2023.67868.1236. [7] Hashemi Borzabadi, A., Gholami Baladezaei, M., Ghachpazan, M. (2024). “A sub-ordinary approach to achieve near-exact solutions for a class of optimal control problems”, Control and Optimization in Applied Mathematics, (2), 1-19, doi:10.30473/coam.2024.70834.1254. [8] Jajarmi, A., Hajipour, M. (2017). “An efficient finite difference method for the time-delay optimal control problems with time-varying delay”, Asian Journal of Control, 19(2), 554-563, doi:10.1002/asjc.1371. [9] Jajarmi, A., Pariz, N., Vahidian Kamyad, A., Effati, S. (2011). “A novel modal series representation approach to solve a class of nonlinear optimal control problems”, International Journal of Innovative Computing, Information & Control: IJICIC, 7, 1413-1425. [10] Karbassi, S.M., Bell, D.J. (1993). ”Parametric time-optimal control of linear discrete-time systems by state feedback. Part 1. Regular Kronecker invariants”, International Journal of Control, 57(4), 817–830, doi:10.1080/00207179308934415. [11] Karbassi, S.M., Bell, D.J. (1994). “New method of parametric eigenvalue assignment in state feedback control”, IEE Proceedings - Control Theory and Applications, Institution of Electrical Engineers, 141(4), 223–226, doi:10.1049/ip-cta:19941157. [12] Kleinman, D. (1968). “On an iterative technique for Riccati equation computations”, IEEE Transactions on Automatic Control, 13(1), 114-115, doi:10.1109/TAC.1968.1098829. [13] Kodra, K., Gajic, Z. (2017). “Optimal control for a new class of singularly perturbed linear systems”, Automatica, 81, 203-208, doi:10.1016/j.automatica.2017.03.017. [14] Liu, X., Yang, C., Zhou, L., Fu, J., Dai, W. (2021). “Suboptimal reduced control of unknown nonlinear singularly perturbed systems via reinforcement learning”, International Journal of Robust and Nonlinear Control, 31(14), 6626-6645, doi:10.1002/rnc.5624. [15] Mukaidani, H., Xu, H., Mizukami, K. (2002). “A revised Kleinman algorithm to solve algebraic Riccati equation of singularly perturbed systems”, Automatica, 38(3), 553-558, doi:10.1016/S0005-1098(01)00230-8. [16] Mukherjee, S., Bai, H., Chakrabortty, A. (2021). “Reduced-dimensional reinforcement learning control using singular perturbation approximations”, Automatica, 126, 109451, doi:10.1016/j.automatica.2020.109451. [17] Nurges, Ü. (2006). “Robust pole assignment via reflection coefficients of polynomials”, Automatica, 42(7), 1223-1230, doi:10.1016/j.automatica.2006.03.007. [18] Shieh L. S., Dib H.M., Ganesan S. (1988). “Linear quadratic regulators with eigenvalue placement in a specified region”, Automatica, 24(6), 819–823, doi:10.1016/0005-1098(88)90058-1. [19] Yarahmadi, M., Karbasi, S.M. (2009). “Design of robust controller by neuro-fuzzy system in a prescribed region via state feedback”, Iranian Journal of Mathematical Sciences and Informatics, 4, 1-16, doi:10.7508/ijmsi.2009.01.001. [20] Zhao, J., Yang, C., Gao, W. (2022). “Reinforcement learning based optimal control of linear singularly perturbed systems”, IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3), 1362-1366, doi:10.1109/TCSII.2021.3105652. [21] Zhao, J., Yang, C., Gao, W., Park, J.H. (2023). “ADP-based optimal control of linear singularly perturbed systems with uncertain dynamics: A two-stage value iteration method”, IEEE Transactions on Circuits and Systems II: Express Briefs, 70(12), 4399-4403, doi:10.1109/TCSII.2023.3277528. [22] Zhao, J., Yang, C., Gao, W., Zhou, L., Liu, X. (2024). “Adaptive optimal output regulation of interconnected singularly perturbed systems with application to power systems”, IEEE/CAA Journal of Automatica Sinica, 11(3), 595-607, doi:10.1109/JAS.2023.123651. [23] Zhou, L., Zhao, J., Ma, L., Yang, C. (2020). “Decentralized composite suboptimal control for a class of two-time-scale interconnected networks with unknown slow dynamics”, Neurocomputing, 382(21), 71-79, doi:10.1016/j.neucom.2019.11.057 | ||
آمار تعداد مشاهده مقاله: 27 تعداد دریافت فایل اصل مقاله: 48 |