تعداد نشریات | 41 |
تعداد شمارهها | 1,101 |
تعداد مقالات | 9,444 |
تعداد مشاهده مقاله | 17,023,272 |
تعداد دریافت فایل اصل مقاله | 11,938,057 |
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes | ||
Control and Optimization in Applied Mathematics | ||
مقاله 5، دوره 1، شماره 2، دی 2016، صفحه 63-75 اصل مقاله (553.18 K) | ||
نوع مقاله: Research Article | ||
نویسنده | ||
Rohollah Alesheykh* | ||
Payame Noor University | ||
چکیده | ||
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to optimize the precision of defect detection of concrete slabs depending on their qualitative evaluation. Based on this idea, some machine learning algorithms such as C4.5 decision tree, RIPPER rule learning method and Bayesian network have been studied to explore the defect of concrete and to supply a decision system to speed up the defect detection process. The results from the examinations show that the proposed RIPPER rule learning algorithm in combination with Fourier Transform feature extraction method could get a defect detection rate of 93% as compared to other machine learning algorithms. | ||
کلیدواژهها | ||
decision tree؛ Bayesian network؛ rule learning algorithm؛ Optimization؛ Soft Computing | ||
عنوان مقاله [English] | ||
تحلیل تطبیقی الگوریتمهای یادگیری ماشین با اهداف بهینهسازی | ||
نویسندگان [English] | ||
روح الله آل شیخ | ||
دانشگاه پیام نور | ||
چکیده [English] | ||
مبحث بهینهسازی و یادگیری ماشین بهصورت گستردهای بههم مرتبط هستند و بهینهسازی در مسایل مختلف منجر به استفاده از روشهای یادگیری ماشین میگردد. الگوریتمهای یادگیری ماشین برای کلاسهای ویژهای از مسایل در یک زمان محاسباتی منطقی کار میکنند و نقش مهمی در استخراج دانش از حجم انبوهی از دادهها دارند. در این مقاله یک روش برای بهینهسازی دقت تشخیص نقص قطعههای بتنی بر اساس ازریابی کیفی آنها بهکار گرفته شده است. بر این اساس، چند الگوریتم یادگیری ماشین از جمله درخت تصمیمگیری C4.5 ، روش یادگیری قاعده ریپر و شبکه بیزین، برای بررسی نقص در بتن مورد مطالعه قرار گرفتهاند تا یک سیستم تصمیمگیری برای سرعت بخشیدن به فرآیند تشخیص نقص مهیا گردد. نتایج آزمایشها نشان میدهد که میزان تشخیص نقص 93 درصد با استفاده از الگوریتم یادگیری قاعده ارائه شده به همراه روش استخراج ویژگی تبدیل فوریه در مقایسه با سایر الگوریتمهای یادگیری ماشین حاصل شده است. | ||
کلیدواژهها [English] | ||
درخت تصمیمگیری, شبکه بیزین, روش یادگیری قاعده, بهینهسازی, محاسبات نرم | ||
مراجع | ||
[1] Asano M., Kamada T., Kunieda M., Rokugo K. (2003). `` Impact acoustics methods for defect evaluation in concrete ", International Symposium Non-Destructive Testing in Civil Engineering.
[2] Chen H., Wang J., Wang M., Angelia M. (2014). `` Applying particle swarm optimization-based decision tree classifier for cancer classification on gene expression data ", Applied Soft Computing, 24, 773-780.
[3] Chia-Hsuan S. (2012). `` Acoustic based condition monitoring ", The Graduate Faculty of The University of Akro, Ph.D dissertation.
[4] Cohen W. W. (1995). `` Fast effective rule induction ", Proceedings of International Conference on Machine Learning, Lake Tahoe, CA.
[5] Cowling M., Sitte R. (2003). `` Comparison of techniques for environmental sound recognition ", Pattern Recognition Letters, 24(15), 2895-2907.
[6] Debdas S., Quereshi M., Reddy A., Chandrakar D., Pansari D. (2011). `` A wavelet based multiresolution analysis for real time condition monitoring of AC machine using vibration analysis ", International Journal of Scientific and Engineering Research.
[7] Furnkranz J. (1999). `` Separate-and-conquer rule learning ", Artificial Intelligence Review, 13, 3–54.
[8] Fuster-Parra P., Tauler P., Bennasar-Veny M., Ligęza A., López-González A., Aguiló A. (2016). `` Bayesian network modelling: A case study of an epidemiologic system analysis of cardiovascular risk ", Computer Methods and Programs in Biomedicine, 126, 128-142.
[9] Gokgoz E., Subasi A. (2015). `` Comparison of decision tree algorithms for EMG signal classification using DWT ", Biomedical Signal Processing and Control, 18, 138-144.
[10] Gray R. (1990). `` Entropy and information theory ", New York, Springer-Verlag.
[11] Han J., Kamber M. (2001). `` Data mining: concepts and techniques ", San Francisco, Morgan Kaufmann.
[12] Han J., Kamber M., Pei J. (2011). `` Data mining: concepts and techniques ", Third Edition, Morgan Kaufmann.
[13] Heckerman D. (1999). `` A tutorial on learning with Bayesian networks ", In Learning in Graphical Models, MIT Press, Cambridge, MA.
[14] Henry M. (2011). `` Learning techniques for identifying vocal regions in music using the wavelet transformation, Version 1.0 ", Graduate School of Arts and Sciences of Georgetown University, Washington DC, M.S. dissertation.
[15] Jaber A., Bicker R. (2016). `` Industrial robot backlash fault diagnosis based on discrete wavelet transform and artificial neural network ", American Journal of Mechanical Engineering, 4(1), 21-31.
[16] Khunarsal P., Lursinsap C., Raicharoen T. (2013). `` Very short time environmental sound classification based on spectrogram pattern matching ", Information Sciences, 243, 57-74.
[17] Koch C., Georgieva K., Kasireddy V., Akinci B., Fieguth P. (2015). `` A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure ", Advanced Engineering Informatics, 29(2), 196-210.
[18] Ma L., Destercke S., Wang Y. (2016). `` Online active learning of decision trees with evidential data ", Pattern Recognition, 52, 33-45.
[19] Maas R., Huemmer C., Hofmann C., Kellermann W. (2014). `` On Bayesian networks in speech signal processing ", 11th ITG Conference on Speech Communication, Germany.
[20] McNab A., Dunlop I. (1990). `` Artificial intelligence techniques for the automated analysis of ultrasonic NDT data ", IEE Colloquium on Advances in Transducers, Equipment and Data Processing to Improve the Reliability of NDT, 1-8.
[21] Mitchell T. (1997). `` Machine learning ", McGraw-Hill.
[22] More S., Gaikwad P. (2016). `` Trust-based voting method for efficient malware Detection ", Procedia Computer Science, 79, 657-667.
[23] Oran Brigham E. (1988). `` The fast Fourier transform and its applications ”, Prentice-Hall.
[24] Park B., Bae J. K. (2015). `` Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia ", Expert Systems with Applications, 42(6), 2928-2934.
[25] Pearl J. (1988). `` Probabilistic reasoning in intelligent systems: networks of plausible inference ", Morgan Kaufmann.
[26] Quinlan J. (1993). `` C4.5: Programs for machine learning ", San Francisco, Morgan Kauffman.
[27] Rancoita P., Zaffalon M., Zucca E., Bertoni F., de Campose C. (2016). `` Bayesian network data imputation with application to survival tree analysis ", Computational Statistics and Data Analysis, 93, 373-387.
[28] Sawicki J., Sen A., Litak G. (2009). `` Multiresolution wavelet analysis of the dynamics of a cracked rotor ", International Journal of Rotating Machinery.
[29] Suvrit S., Nowozin S., Wright S. J. (2012). `` Optimization for machine learning ", MIT Press.
[30] Sugiyama M. (2016). `` Statistical machine learning ", Introduction to Statistical Machine Learning, 3-8.
[31] Suzuki J. (1999). " Learning Bayesian belief networks based on the minimum description length principle: basic properties ", IEICE Transactions on Fundamentals, 82(10), 2237−2245.
[32] Vetterli M., Kovacevic J. (1995). `` Wavelets and subband coding ", Prentice Hall.
[33] Wang Y., Li W., Zhou J., Li X., Pu Y. (2014). `` Identification of the normal and abnormal heart sounds using wavelet-time entropy features based on OMS-WPD ", Future Generation Computer Systems, 37, 488-495.
[34] Witten I., Eibe F. (2005). `` Data mining: practical machine learning tools and techniques ", Morgan Kaufmann.
[35] Yu J., Zhou H., Gao X. (2015). `` Machine learning and signal processing for human pose recovery and behaviour analysis ", Signal Processing, 110, 1-4. | ||
آمار تعداد مشاهده مقاله: 3,797 تعداد دریافت فایل اصل مقاله: 2,560 |