
تعداد نشریات | 41 |
تعداد شمارهها | 1,174 |
تعداد مقالات | 10,109 |
تعداد مشاهده مقاله | 18,954,436 |
تعداد دریافت فایل اصل مقاله | 13,143,080 |
اثرات تعدیل کنندگی پودر سیر بر استرس اکسیداتیو ناشی از مسمومیت با سیانید دربرخی بافتهای موش صحرایی | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
مقاله 7، دوره 6، شماره 1، شهریور 1396، صفحه 81-89 اصل مقاله (439.41 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
حسن باغشنی* 1؛ وحیده قدسی2 | ||
1دانشیار، گروه علوم پایه، دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2دانشجوی دکتری تخصصی فیزیولوژی، دانشکده دامپزشکی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
چکیده | ||
مسمومیت مزمن با سیانید میتواند موجب ایجاد آسیب در بافتهای مختلف گردد. در مطالعه حاضر اثرات مسمومیت مزمن با سیانید پتاسیم (KCN) بر برخی شاخصهای وضعیت اکسیداتیو و همچنین اثرات تعدیلکنندگی پودر سیر مورد ارزیابی قرار گرفت. در این مطالعه تجربی مداخله ای تعداد 24 سر موش صحرایی نر در 4 گروه 6 تایی تقسیم شدند. گروه 1 بهعنوان کنترل در نظر گرفته شد. گروه 2 آب آشامیدنی حاوی سیانید (mg/L KCN500) دریافت نمود. گروه 3 آب آشامیدنی حاوی KCN ( mg/L500) و جیره غذایی حاوی 5% پودر سیردریافت نمود. گروه 4 با رژیم غذایی حاوی 5% پودر سیر تغذیه شد. زمان انجام مطالعه تجربی 42 روز بود. سیانید باعث افزایش غلظت مالون دی آلدهید (MDA) در تمام بافتهای مورد مطالعه گردید، البته این افزایش فقط در کلیه، قلب و مغز معنیدار بود. همچنین افزایش معنیدار میزان گروههای کربونیل پروتئینها در بافت کبد و کلیه به دنبال مسمومیت با سیانید مشاهده گردید. مصرف سیر در گروه 3 به طور مؤثری باعث کاهش مقادیر MDA در بافتهای کبد و مغز گردید طوری که میزان این پارامترها اختلاف معنیداری با گروه کنترل نداشتند. علاوه بر این میزان گروههای کربونیل نیز درکبد وکلیه گروه 3 کاهش قابل توجهی داشت طوریکه میزان این پارامترها اختلاف معنیداری با گروه کنترل نداشتند. نتایج این مطالعه نشان میدهد که سیر دارای اثر تعدیلکننده بر آسیب اکسیداتیو ناشی از سیانید در موش صحرایی است و میتواند اثرات درمانی و پیشگیریکننده در مسمومیت با سیانید داشته باشد. | ||
کلیدواژهها | ||
مسمومیت با سیانید؛ سیر؛ آسیب اکسیداتیو | ||
عنوان مقاله [English] | ||
Modulatory effects of garlic powder on cyanide-induced oxidative stress in some tissues of rat | ||
نویسندگان [English] | ||
Hasan Baghshani1؛ Vahide Ghodsi2 | ||
1Associate Professor in Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Ph.D. Student in physiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده [English] | ||
Chronic cyanide intoxication has been shown to induce damage in various tissues. In the present study the effects of chronic exposure to potassium cyanide (KCN) on some oxidative stress-related parameters as well as Modulatory effects of garlic powder were studied. 18 male wistar rats were assigned into three groups, 6 in each group. Group 1 served as control group. Group 2 received cyanide (KCN, 500 mg/L) in drinking water for 42 days. Rats in Group 3 received water containing KCN (500 mg/L in drinking) and also were fed a diet containing 5% garlic powder for 42 days. Cyanide caused increase in malondialdehyde (MDA) concentartins in all studies tissues, although the increase was only significant (P has modulatory effect on cyanide-induced oxidative stress damage in rat and could have therapeutic and prophylactic effects on cyanide poisoning. | ||
کلیدواژهها [English] | ||
Cyanide poisoning, Garlic, Oxidative damage | ||
مراجع | ||
Ardelt, B.K.; Borowitz, J.L.; Maduh, E.U.; Swain, S.L.; Isom, G.E.; (1994). Cyanide-induced lipid peroxidation in different organs: subcellular distribution and hydroperoxide generation in neuronal cells. Toxicology; 89(2): 127-37.
Aslani, M.R.; Mohri, M.; Maleki, M.; Sharifi, K.; (2004). Mohammadi GR, Chamsaz M. Mass cyanide intoxication in sheep. Veterinary and Human Toxicology, Aug; 46(4): 186-7.
Aslani, M.R.; Mohri, M.; Chekani, M.; (2006). Effects of garlic (allium sativum) and its chief compound, allicin, on acute lethality of cyanide in rats. Comparative Clinical Pathology; 15(4): 211-3.
Astier, A.; Baud, F.J.; (1996). Complexation of intra cellular cyanide by hydroxy cobalamin using a human cellular model. Human and Experimental Toxicology; 15: 19-25.
Banerjee, S.K.; Maulik, M.; Manchanda, S.C.; Dinda, A.K.; Das, T.K.; Maulik, S.K.; (2001). Garlic-induced alteration in rat liver and kidney morphology and associated changes in endogenous antioxidant status. Food and Chemical Toxicology; 39: 793-7.
Banerjee, S.K.; Maulik, M.; Mancahanda, S.C.; Dinda, A.K.; Gupta, S.K.; Maulik, S.K.; (2002). Dose-dependent induction of endogenous antioxidants in rat heart by chronic administration of garlic. Life Science; 70: 1509-18.
Baltacioglu, E.; Akalın, F.A.; Alver, A.; Deger, O.; Karabulut, E.; (2008). Protein carbonyl levels in serum and gingival in patients with chronic periodontitis. Archives of Oral Biology; 53: 716-722.
Baskin, S.I.; Brewer, T.G.; Reagor, J.C.; (1997). Cyanide poisoning. In: Sidell FR, Takafuji T, Franz DR, editors. Medical aspect of chemical and biological warfare. First ed. Washington: Army Medical Research Institute of Chemical Defence.
Baskin, S.I.; Porter, D.W.; Rockwood, G.A.; Romano, J.J.A.; Patel, H.C.; Kiser, R.C.; et al. (1999). In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication. Journal of Applied Toxicology; 19: 173-83.
Bayan, L.; Koulivand, H.; Gorji, A.; (2014). Garlic: a review of potential therapeutic effects. Avicenna J Phytomed; 4(1): 1-14.
Bhatt, H.R.; Linnell, J.C.; (1987). The role of rhodanese in cyanide detoxification. its possible use in acute cyanide poisoning in man. In: Ballantyne B, Marrs TC, editors. Clinical and Experimental Toxicology of Cyanides. Bristol ,England: Wright Publishers; p. 440-50.
Bhattacharya, R.; (2000). Antidotes to cyanide poisoning: present status. Indian Journal of Pharmacology; 32: 90-101.
Bhattacharya, R.; Tulsawani, R.; (2009). Protective roleof alpha-ketoglutarate against massive doses of cyanide in rats. Journal of Environmental Biology; 30(4): 515-20.
Chen, H.W.; Tsai, C.W.; Yang, J.J,.; Liu, C.T.; Kuo, W.W.; Lii, C.K.; (2003). The combined effects of garlic oil and fish oil on the hepatic antioxidant and drug-metabolizing enzymes of rats. British Journal of Nutrition; 89: 189-200.
Daya, S.; Walker, R.B.; kumar-Dukie, S.; (2002). Cyanide-induced free radical production in rat brain homogenate is reduced by asprin. Metabolic Brain Disease; 15: 203-10.
Dean, R.T.; Fu, S.; Stocker, R.J.; Davies, M.J.; (1997). Biochemistry and Pathology of radical – mediated protein oxidation. Biochemical Journal; 324: 1-18.
Duda, G.; Suliburska, J.; Pupek-Musialik, D.; (2008). Effects of short-term garlic supplementation on lipid metabolism and antioxidant status in hypertensive adults. Pharmacological Reports; 60: 163-70.
Durak, I.; Aytac, B.; Atmaca, Y.; Devrim, E.; Avci, A.; Erol, C.; et al. (2004). Effects of garlic extract consumption on plasma and erythrocyte antioxidant parameters in atherosclerotic patients. Life Science; 75: 1959-66.
Ghodsi, V.; Baghshani, H.; (2013). Evaluation of sublethal cyanide exposure on plasma biochemical profile in rats and possible protective effect of garlic. HVM Bioflux; 5(2): 58-61.
Gunasekar, P.G.; Sun, P.W.; Kanthasamy, A.G.; Borowitz, J.L.; Isom, G.E.; (1996). Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-methyl-D-aspartate receptor activation. J Pharmacol Exp Ther.; 277(1): 150-5.
Hariharakrishnan, J.; Satpute, R.M.; Prasad, G.B.K.S.; Bhattacharya, R.; (2009). Oxidative stress mediated cytotoxicity of cyanide in LLC-MK2 cells and its attenuation by Alpha-ketoglutarate and N-acetyl cysteine. Toxicology Letters; 185: 132-141.
Iciek, M.; Marcinek, J.; Mleczko, U.; Włodek, L.; (2007). Selective effects of diallyl disulfide, a sulfane sulfur precursor, in the liver and Ehrlich ascites tumor cells. European Journal of Pharmacology; 569(1-2): 1-7.
Imai, I.; Ide, N.; Nagae, S.; Moriguchi, T.; Matsuura, H.; Itakura, Y.; (1994). Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med.; 60: 417-20.
Jabbari, A.; Argani, H.; Ghorbanihaghjo, A.; Mahdavi, R.; (2005). Comparison between swallowing and chewing of garlic on levels of serum lipids, cyclosporine, creatinine and lipid peroxidation in renal transplant recipients. Lipids in Health and Disease; 4(11): 1-4.
Jensen, C.; Lauridsen, C.; Bertelsen, G.; (1987). Dietary vitamin E: quality and storage stability of pork and poultry. Science and Technology; 9: 62-72.
Kamalu, B.P.; (1995). The adverse effects of long-term cassava (Manihot esculenta Crantz) consequation. International Journal of Food Sciences and Nutrition; 46: 65-93.
Katoch, B.; Sebastian, S.; Sahdev, S.; Padh, H.; Hasnain, SE.; Begum, R.; (2002). Programmed cell death and its clinical implication. Indian Journal of experimental Biology; 406: 513-24.
Latha, M.; Pari, L.; (2003). Preventive effects of Cassia auriculata L. flowers on brain lipid peroxidation inrats treated with streptozotocin. Molecular and Cellular Biochemistry; 243: 23-8.
Maldonado, P.D.; Barrera, D.; Medina-Campos, O.N.; Hernández-Pando, R.; Ibarra-Rubio, M.E.; Pedraza-Chaverrí, J.; (2003). Aged garlic extract attenuates gentamicin induced renal damage and oxidative stress in rats Life Sciences; 73: 2543-56.
Mathangi, DC.; Namasivayam, A.(2000). Effect of chronic cyanide intoxication on memory in albino rats. Food Chem Toxicol.; 38: 51-5.
Mathangi, D.C.; Shyamala, R.; Vijayashree, R.; Rao, K.R.; Ruckmani, A. ; Vijayaraghavan, R.; et al. (2011). Effect of alpha-ketoglutarate on neurobehavioral, neurochemical and oxidative changes caused by sub-chronic cyanide poisoning in rats. Neurochem Res.; 36(3): 540.
Muller, U.; Krieglstein, J.; (1995). Inhibitors of lipid peroxidation protect cultured neurons against cyanide-induced injury. Brain Res.; 8: 265-267.
Nahdi, A.; Hammami, I.; Kouidhi, W.; Chargui, A.; Ben Ammar, A.; Hamdaoui, MH.; et al. (2010). Protective effects of crude garlic by reducing iron-mediated oxidative stress, proliferation and autophagy in rats. Journal of Molecular Histology; 41: 233-45.
Okolie, N.P.; Iroanya, C.U.; (2003). Some histologic and biochemical evidence for mitigation of cyanide-induced tissue lesions by antioxidant vitamin administration in rabbits Food and Chemical Toxicology; 41: 463-9.
Okolie, N.P.; Asonye, C.C.; (2004). Mitigation of cataractogenic potential of cyanide by antioxidant vitamin administration. Journal of Medicine and Biomedical Research; 3(1): 48-52.
Okolie, N.P.; Osobase, S.; (2005). Cataractogenic potential of cyanide-induced oxidative stress in rabbits. Global Journal of Pure and Applied Sciences; 11(1): 57-62.
Rajat, G.; Edward, N.; Stephen, E.; Joseph, B.; George, W-C.; (2005). Natural Sources of Cyanide. Cyanide in Water and Soil: CRC Press, p. 25-40.
Soto-Blanco, B.; Gorniak, S.L.; (2003). Milk transfer of cyanide and thiocyanate: cyanide exposure by lactation in goats. Vet Res; 34: 213-20.
Sousa, A.B.; Soto-Blanco, B.; Guerra, J.L.; Kimura, E.T.; G´orniak, S.L.; (2002). Does prolonged oral exposure to cyanide promote hepatotoxicity and nephrotoxicity? Toxicology; 174: 87-95.
Tewe, O. O.; Iyayi, E. A.; (1989). Cyanogenic glycosides. In: Cheek PR, editor. Toxicants of plant origin. Florida: CRC Press; p. 43-60.
Tulsawani, R. K.; Debnath, M.; Pant, S. C.; Kumar, O.; Prakash, AO.; Vijayaraghavan, R.; et al. (2005). Effect of sub-acute oral cyanide administration in rats: protective efficacy of alpha-ketoglutarate and sodium thiosulfate. Chem Biol Interact; 156(1): 1-12.
Vidyashankar, S.; Sambaiah, K.; Srinivasan, K.; (2010). Effect of dietary garlic and onion on biliary proteins and lipid peroxidation which influence cholesterol nucleation in bile. Steroids;75: 272-81.
| ||
آمار تعداد مشاهده مقاله: 945 تعداد دریافت فایل اصل مقاله: 756 |