
تعداد نشریات | 41 |
تعداد شمارهها | 1,154 |
تعداد مقالات | 9,925 |
تعداد مشاهده مقاله | 18,488,737 |
تعداد دریافت فایل اصل مقاله | 12,838,060 |
Using Polyaniline/Maghemit Magnetic Nanocomposite for Removal of Lead from Aqueous Solutions | ||
Iranian Journal of Analytical Chemistry | ||
مقاله 5، دوره 5، شماره 1، خرداد 2018، صفحه 33-38 اصل مقاله (947.13 K) | ||
نوع مقاله: Full research article | ||
نویسندگان | ||
Fatemeh Sabermahani* ؛ Leyli Irannejad؛ Nosrat Madadi Mahani | ||
Department of Chemistry, Payame Noor University, 19395-3697, Tehran, Iran | ||
چکیده | ||
Polyaniline/maghemite magnetic nanocomposite (PANI/γ -Fe2O3 MNC) was used as active agents for removal of lead ions from aqueous media. Chemical co-precipitation method was used to prepare the maghemite nanoparticles. Subsequently, the MNC was synthesized through polymerization of aniline. It was characterized by FT-IR.The efficiency of this MNC was estimated for Pb (II) removal by using batch method. The results showed that optimum conditions for lead removal were found to be at pH of 6, adsorbent dosage of 0.04 g and equilibrium contact time of 90 min. The kinetic of adsorption system have been studied based on the assumption of a pseudo-second order rate law. The adsorption isotherms were examined. The Freundlich adsorption isotherm model was found to represent the equilibrium adsorption isotherm better than Langmuir isotherm. The thermodynamic studies indicated that the adsorption was spontaneous and endothermic process for lead. | ||
کلیدواژهها | ||
adsorption؛ Conducting Polymer؛ lead؛ Nanocomposite؛ removal | ||
عنوان مقاله [English] | ||
استفاده ازنانوکامپوزیت مغناطیسی پلی آنیلین/ماگمیت برای حذف سرب از محیطهای آبی | ||
نویسندگان [English] | ||
فاطمه صابر ماهانی؛ لیلی ایران نژاد؛ نصرت مددی ماهانی | ||
بخش شیمی، دانشگاه پیام نور، صندوق پستی 3697-19395 ، تهران، ایران | ||
چکیده [English] | ||
نانوکامپوزیت مغناطیسی پلی آنیلین/ماگمیت (PANI/γ -Fe2O3 MNC) به عنوان یک واکنشگر فعال برای حذف سرب از محیطهای آبی استفاده شد. روش همرسوبی شیمیایی برای تهیه نانوذرات ماگمیت بکار رفت و به دنبال آن نانوکامپوزیت مغناطیسی از طریق پلیمریزاسیون آنیلین تهیه گردید. سطح آن توسط IR FT- مشخص گردید. راندمان این نانوکامپوزیت برای حذف سرب به روش ناپیوسته بررسی شد. نتایج نشان داد که شرایط بهینه برای حذف سرب در 6= pH، مقدار جاذب 04/0 گرم و زمان تماس 90 دقیقه رخ می دهد. سینتیک جذب مطالعه شد و با معادله سرعت مرتبه دوم مطابقت داشت. ایزوترمهای جذب بررسی گردیدند. مدل ایزوترم جذبی فروندلیچ تطابق بیشتری نسبت به لانگمویر داشت. مطالعات ترمودینامیکی دلالت برخودبخودی و گرماگیر بودن فرایند جذب سرب داشت. | ||
کلیدواژهها [English] | ||
جذب سطحی, پولیمر هادی, سرب, نانوکامپوزیت, حذف | ||
مراجع | ||
[1] B. Rahmanian, M. Pakizeh, S.A.A. Mansoori and R. Abedini, Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process, J. Hazard.Mater. 187 (2011) 67-74.
[2] B. Rahmanian, M. Pakizeh and A. Maskooki, Micellar-enhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane, J. Hazard.Mater.184 (2010) 261-267.
[3] H. Ucun, Y.K. Bayhan, Y. Kaya, A. Cakici and O.F. Algur, Biosorption of lead(II) from aqueous solution by cone biomass of Pinus sylvestris, Desalination 154 (2003) 233-238.
[4] Y. Kong, J. Wei, Z. Wang, T. Sun, C. Yao and Z. Chen, Heavy metals removal from solution by polyaniline/palygorskite composite, J. Appl. Polym. Sci. 122 (2011) 2054-2059.
[5] M. Ghorbani and H. Eisazadeh, Fixed bed column study for Zn, Cu, Fe and Mn removal from wastewater using nanometer size polypyrrole coated on rice husk ash, Synthetic Met. 162 (2012) 1429-1433.
[6] G. Zhao, X. Wu, X. Tan and X. Wang, Sorption of heavy metal ions from aqueous solutions: a review, Open Colloid Sci. J. 4 (2011) 19-31.
[7] F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage. 92 (2011) 407-418.
[8] M. Ghorbani, M.S. Lashkenari and H. Eisazadeh, Application of polyaniline nanocomposite coated on rice husk ash for removal of Hg(II) from aqueous media, Synth.Met. 161 (2011) 1430-1433.
[9] O.S. Amuda, A.A. Giwa and I.A. Bello, Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J. 36 (2007) 174-181.
[10] M.J. Ayotamuno, R.N. Okparanma, S.O.T. Ogaji and S.D. Probert, Chromium removal from flocculation effluent of liquid-phase oil-based drill-cuttings using powdered activated carbon, Appl. Energ. 84 (2007) 1002-1011.
[11] A.K. Bhattacharya, T.K. Naiya, S.N. Mandal and S.K. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem.Eng. J. 137 (2008) 529-541.
[12] M. Koroki, S. Saito, H. Hashimoto, T. Yamada and M. Aoyama, Removal of Cr(VI) from aqueous solutions by the culm of bamboo grass treated with concentrated sulfuric acid, Environ. Chem. Lett. 8 (2010) 59-61.
[13] C.M. Monteiro, P.M.L. Castro and F.X. Malcata, Capacity of simultaneous removal of zinc and cadmium from contaminated media, by two microalgae isolated from a polluted site, Environ. Chem. Lett. 9 (2011) 511-517.
[14] A.M.G.C. Dias, A. Hussain, A.S. Marcos and A.C.A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnol. Adv. 29 (2011) 142-155.
[15] S. Laurent et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev. 108 (2008) 2064-2110.
[16] N.T.K. Thanh and L.A.W. Green, Functionalisation of nanoparticles for biomedical applications, Nano Today 5 (2010) 213-230.
[17] C.H. Yu, W. Oduro, K. Tam and E.S.C. Tsang, Some Applications of Nanoparticles, in: A.B. John (Ed.), Handbook of Metal Physics, Elsevier, 5 (2008) 365–380.
[18] X. Li, J. Zhang, H. Gu, Langmuir 27 (2011) 6099–6106.
[19] C.-L. Chiang, C.-S. Sung, T.F. Wu, C.Y. Chen and C.Y. Hsu, Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells, J. Chromatogr. B 822 (2005) 54-60.
[20] P. Ashtari, X. He, K. Wang and P. Gong, An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles, Talanta 67 (2005) 548-554.
[21] T. Lund-Olesen, M. Dufva and M.F. Hansen, Capture of DNA in microfluidic channel using magnetic beads: Increasing capture efficiency with integrated microfluidic mixer, J. Magn. Magn. Mater. 311 (2007) 396-400.
[22] T. Tanaka et al., Characterization of magnetic nanoparticles modified with thiol functionalized PAMAM dendron for DNA recovery, J. Colloid Interface Sci. 377 (2012) 469–475.
[23] Z. Shan et al., Bacteria capture, lysate clearance, and plasmid DNA extraction using pH-sensitive multifunctional magnetic nanoparticles, Biochem. 398 (2010) 120–122.
[24] S. Bhadra, D. Khastgir, N.K. Singha and J.H. Lee, Bacteria capture, lysate clearance, and plasmid DNA extraction using pH-sensitive multifunctional magnetic nanoparticles, Prog. Polym. Sci. 34 (2009) 783-810.
[25] J. Aphesteguy and S. Jacobo, Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties, J. Mater. Sci. 42 (2007) 7062–7068. | ||
آمار تعداد مشاهده مقاله: 545 تعداد دریافت فایل اصل مقاله: 456 |