تعداد نشریات | 41 |
تعداد شمارهها | 1,131 |
تعداد مقالات | 9,681 |
تعداد مشاهده مقاله | 17,624,763 |
تعداد دریافت فایل اصل مقاله | 12,303,218 |
A New Approach for Approximating Solution of Continuous Semi-Infinite Linear Programming | ||
Control and Optimization in Applied Mathematics | ||
مقاله 5، دوره 2، شماره 1، تیر 2017، صفحه 65-76 اصل مقاله (476.22 K) | ||
نوع مقاله: Research Article | ||
نویسندگان | ||
Alireza Fakharzadeh Jahromi* ؛ Zahra Alamdar Ghahferokhi | ||
Department of Mathematics, Shiraz University of Technology, Shiraz, Iran | ||
چکیده | ||
This paper describes a new optimization method for solving continuous semi-infinite linear problems. With regard to the dual properties, the problem is presented as a measure theoretical optimization problem, in which the existence of the solution is guaranteed. Then, on the basis of the atomic measure properties, a computation method was presented for obtaining the near optimal solution by means of famous and simple simplex method. Some numerical results are reported to indicate the efficiency of the new method. | ||
کلیدواژهها | ||
Atomic measure؛ Linear programming؛ Radon measure؛ Semi-infinite linear programming؛ Weak* topology | ||
عنوان مقاله [English] | ||
راهبردی جدید برای حل تقریبی برنامه ریزی خطی نیمه متناهی پیوسته | ||
نویسندگان [English] | ||
علیرضا فخارزاده جهرمی؛ زهرا علمدار قهفرخی | ||
استاد ریاضی کاربردی، شیراز، دانشگاه صنعتی شیراز، دانشکده علوم پایه | ||
چکیده [English] | ||
این مقاله یک روش جدید بهینه سازی برای حل مسایل خطی نیمه-نامتناهی پیوسته را شرح می دهد. با در نظر گرفتن خواص دوگان، ابتدا مساله به صورت یک مساله بهینه سازی در نظریه اندازه ها ارایه شده است به طوری که وجود جواب آن تضمین شده می باشد. آنگاه بر پایه خواص اندازه های اتمی و بهره گیری از روش مشهور سیمپلکس، یک روش محاسباتی برای تعیین جواب نزدیک بهینه ارایه شده است. به منظور نمایاندن کارآیی روش جدید، چندین نتیجه عددی نیز گزارش شده است. | ||
کلیدواژهها [English] | ||
اندازه اتمی, برنامه ریزی خطی, اندازه رادن, برنامه ریزی خطی نیمه متناهی, توپولوژی ضعیف* | ||
مراجع | ||
[1] Anderson E. J., Nash P. (1987). ``Linear programming in infinite dimensional space'', Theory and Application, John Wiley and Sons.
[2] Basu A., Christopher M., Ryan T. (2017). ``Strong duality and sensitivity analysis in semi-infinite linear programming'', Mathematical Programming, 161, 451-485.
[3] Choquet G. (1969). ``Lectures on analyziz'', Benjamin publisher, New York.
[4] Conway J. B. (1990). ``A course in functional analysis'', University of Tennessee, Springer.
[5] Fakharzade J. A., Rubio J. E. (1999). ``Global solution of optimal shape design problems'', Zeitschrift fur Analysis and ihre Anwendungen, 18(1), 143-155.
[6] Fakharzade J. A., Rubio J. E. (2009). ``Best domain for an elliptic problem in cartesian coordinates by means of shape-measure'', Asian Journal of Control, 11, 536-547.
[7] Fiacco A. V., Kortanek K. O. (1981). ``Semi-infinite programming and Application'', Papers from the International Symposium Economics and Mathematical System, 215 held at the university of Texas, Austin, September 8-10.
[8] Goberna M. A., Lopez M. A. (1998). ``Linear semi-infinite Optimizatiom'', John Wiley and Sons, Chichester.
[9] Goberna M. A., Lopez M., Wu S. Y. (2001). ``Separationa by hyper planes: A linear semi-infinite programming approach'', In: M. A. Goberna, M. Lopez (eds), Semi-Infinite Programming Recent Advances, Kluwer, Dordrecht, 255-269.
[10] Glashoff K., Gustafson S. A. (1983). ``Linear optimization and approximation: An introduction to the theoretical analysis and numerical treatment of semi-infinite programms'', Applied Mathematical Siences, 45, Springer-Verlag, New York.
[11] He L., Huang H., Lu H. (2011). ``Bivariate interval semi-infinite programming with an application to environmental decision making analysis'', European Journal of Operational Research, 211, 452-465.
[12] Hermes H., Lasalle J. P. (1969). ``Functional analysis and time optimal control'', Matematics in Sience and Engineering 56, Academic press, New York and London.
[13] Hettich R., Kortanek K. O. (1993). ``Semi-infinite programming: theory, methods and applications'', SIAM Review, 35, 380-429.
[14] Kiwiel, K. C. (2001). ``Convergence of subgradient methods for quasicovex minimization'', Mathematical Programming (Series A), 90, 1-25.
[15] Leo'n T., Vercher E. F. (2001). ``Optimization under uncertainty and linear semi-infinite programming: A survey", In: M.A. Goberna, M. Lopez (eds), Semi-Infinite Programming Recent Advances, Kluwer: Dordrecht, 327-348.
[16] Leo'n T., Sanmatias S., Vercher F. (2000). ``On the numerical treatment of linearly constrained semi-infinite optimization problems'', European Journal of Operational Research, 121, 78-91.
[17] Kanzi N., Nobakhtian S. (2009). ``Nonsmooth semi-infinite programming problems with mixed constraints'', Journal of Mathematical Analysis and Applications, 351, 170-181.
[18] Nash P.(1985). ``Algebraic fundamentals of linear Programming'', In Anderson E.J. and Philpott A.B. (eds.) Infinite programming Berlin. Springer.
[19] Oskoorouchi M. R., Ghaffari H. R., Terlaky T. (2011). ``An interior point constraint generation method for semi-infinite linear programming'', Operations Research, 59, 1184-1197.
[20] Reemtsen R., Ruckmann J. J. (1998). ``Nonconvex optimization and its application: semi-infinite programming'', Kluwer Academic Publishers, London.
[21] Rosenbloom P. C. (1952). ``Qudques classes de problems exteremaux'', Buleetin de societe Mathematique de France, 80, 183-216.
[22] Rubio J. E. (1986). ``Control and optimization: the linear treatment of nonlinear problems'', Manchester University Press, Manchester.
[23] Rubio J. E. (1993). ``The global control of nonlinear elliptic equation'', Journal of The Franklin Institute, 330, 29-35.
[24] Vaz, A. I. F. (2001). ``Robot trajectory planning with semi-infinite programming" Paris, Sep. 26-29 OPR.
[25] Vazquez F. G., Ruckmann J. J., Stein O., Still G. (2008). ``Generalized semi-infinite programming'', Journal of Computational and Applied Mathematics, 217, 394-419.
[26] Voigt H. (1998). ``Semi-infinite transportation problems'', Zeitschrift fur Analysis and ihre Anwendungen, 17, 729-741.
[27] Wang M., Kuo Y. E. (1999). ``A perturbation method for solving linear semi-infinite programming problems'', Computers and Mathematics with Applications, 37, 181-198.
[28] Winterfeld A. (2008). ``Application of general semi infinite programming to lapidary cutting problems'', European Journal of Operational Research, 191, 838-854. | ||
آمار تعداد مشاهده مقاله: 669 تعداد دریافت فایل اصل مقاله: 422 |