
تعداد نشریات | 41 |
تعداد شمارهها | 1,145 |
تعداد مقالات | 9,842 |
تعداد مشاهده مقاله | 18,157,625 |
تعداد دریافت فایل اصل مقاله | 12,679,080 |
بررسی فعالیت ضد قارچی فیکوسیانین خالصسازیشده از جلبک سبزآبی اسپیرولینا پلاتنسیس کشت دادهشده در ایران در مقابل قارچ کاندیدا آلبیکنس | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
مقاله 5، دوره 8، شماره 4، خرداد 1399، صفحه 57-66 اصل مقاله (736.27 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2019.43095.1658 | ||
نویسندگان | ||
ندا زمانی1؛ محمد فضیلتی2؛ حسین صلواتی3؛ مهرآنا کوهی دهکردی* 4 | ||
1دکتری بیوشیمی، گروه علوم پایه، دانشگاه پیام نور | ||
2استاد، گروه علوم پایه، دانشگاه پیام نور | ||
3دانشیار، گروه علوم پایه، دانشگاه پیام نور | ||
4استادیار، گروه علوم کشاورزی، دانشگاه پیام نور | ||
چکیده | ||
امروزه استفاده از رنگهای طبیعی در مواد غذایی و دارویی بهدلیل اثرات سمی گزارششده از رنگهای مصنوعی، اهمیت زیادی دارد. فیکوسیانین، یک رنگدانه آبی طبیعی است که علاوه بر کاربردهای تجاری گسترده در صنایع غذایی، آرایشی و دارویی، فعالیتهای ضدقارچی، آنتیاکسیدانی و ضدسرطانی آن نیز به اثبات رسیده است. در مطالعه حاضر، فعالیت ضدقارچی فیکوسیانین استخراجشده از اسپیرولینا پلاتنسیس روی قارچ کاندیدا آلبیکنس بررسی شد. فیکوسیانین از طریق روش سونیکاسیون استخراج شد و توسط رسوبگذاری آمونیومسولفات و روش دیالیز، خالصسازی شد. نمونه تخلیصشده، از طریق جذب UV اسپکتروفتومتر و FT-IR، بررسی شد و فعالیت ضدقارچی غلظتهای مختلف فیکوسیانین در مقابل کاندیدا آلبیکنس روی پلیتهای سابارود دکستروز آگار تحت شرایط استریل، مورد بررسی قرار گرفت. بر اساس نتایج UV اسپکتروفتومتر، پیکهای وسیعی در طول موجهای 280، 620 و 652 نانومتر بهدست آمد. ساختار و پیوندهای مولکولی فیکوسیانین، توسط روش FT-IR، مشخص شد. فعالیت ضدقارچی فیکوسیانین در مقابل قارچ کاندیدا آلبیکنس تأیید و بیشترین فعالیت ضدقارچی در غلظتهای 20 و 25 میلیگرم بر میلیلیتر فیکوسیانین، مشاهده شد. در مطالعه حاضر کاربرد فیکوسیانین تأثیر ضد قارچی مناسبی علیه کاندیداآلبیکنس نشان داد .به نظر میرسد این رنگدانه بتواند با مطالعات تکمیلی بهعنوان جایگزین مناسبی برای داروهای شیمیایی در درمان عفونتهای کاندیدایی استفاده شود. | ||
کلیدواژهها | ||
اسپیرولینا پلاتنسیس؛ سونیکاسیون؛ فعالیت ضدقارچی؛ فیکوسیانین؛ کاندیدا آلبیکنس | ||
عنوان مقاله [English] | ||
Evaluation of antifungal activity of purified phycocyanin from Spirulina platensis cultured in Iran against Candida albicans | ||
نویسندگان [English] | ||
Neda Zamani1؛ Mohamad Fazilati2؛ Hossein Salavati3؛ Mehrana Koohi-Dehkordi4 | ||
1Ph.D., Department of Chemistry, Payame Noor University, 19395-3697, Tehran, Iran | ||
2Professor, Department of Chemistry, Payame Noor University, 19395-3697, Tehran, Iran | ||
3Associate Professor, Department of Chemistry, Payame Noor University, 19395-3697, Tehran, Iran | ||
4Assistant Professor, Department of Agricultural Sciences, Payame Noor University, 19395-3697, Tehran, Iran | ||
چکیده [English] | ||
Nowadays, use of natural colors in food and medicine, due to toxic effects of synthetic colors is so important. Phycocyanin (PC) is an innate blue pigment with many mercantile usages in foods, cosmetics and medicines extracted from Spirulina platensis. In addition, it has been proven that phycocyanin has antifungal, antioxidant and anticancer activities. The present study was undertaken to value the antifungal activity of phycocyanin which was separated from the blue green algae Spirulina platensis cultured in Iran. Phycocyanin extracted by sonication and centrifugation and purified by ammonium sulfate sedimentation and dialysis method. Purified sample was tested by UV Spectrophotometer absorption and FT-IR and antifungal activity of phycocyanin in different concentration was investigated against Candida albicans, on sabouraud dextrose (SD) agar plates, under sterile conditions. In UV Spectrophotometer, a wide peak range at 280, 615, 652 nm was gained. Also, structure and molecular bonds of phycocyanin was confirmed via FT-IR. An Anticandidal activity of phycocyanin was confirmed and maximum anti-fungal activity was observed in 20 and 25 mg/ml concentration of phycocyanin. In the present study, the use of phycocyanin has shown an antifungal effect against Candida albicans. This pigment seems to be a good alternative to chemical drugs in the treatment of Candidiasis. | ||
کلیدواژهها [English] | ||
Antifungal activity, Candida albicans, Phycocyanin, Sonication, Spirulina platensis | ||
مراجع | ||
Abalde, J.; Betancourt, L.; Torres, E.; Cid, A.; Barwell, C. (1998). Purification and characterization of phycocyanin from marine cyanobacterium Synechococcus sp. IO9201. Plant Science; 136(1): 109-120.
Bermejo, R.; Felipe, M.A.; Talavera, E.M.; Alvarez-Pez, J.M. (2006). Expanded bed adsorption chromatography for recovery of phycocyanins from the microalgae Spirulina platensis. Chromatographia; 63(1-2): 59-66.
Bhat, V.B.; Madyastha, K. (2001). Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochemical and Biophysical Research; 285(2):262-266.
Colla, L.M.; Costa, J.A.V.; Furlong, E.B. (2007). Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes. Brazilian Archives of Biology and Technology; 50(1): 161-167.
Constanta, T.; Ansaf, M.E. (2016). Heat related disseminated candidiasis. Ecotoxicologie, Zootehnie și Tehnologii de Industrie Alimentară; 15(B).
da Silva Frozza, C.O.; Garsia, C.S.C.; Gambato, G.; de Souza, M.D.O.; Salvador, M.; Moura, S.; et al. (2013). Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and Chemical Toxicology; 52: 137-142.
El-Sheekh, M.; Mahmoud, Y.G.; Abo-Shady, A.; Hamza, W. (2010). Efficacy of Rhodotorula glutinis and Spirulina platensis carotenoids in immunopotentiation of mice infected with Candida albicans SC5314 and Pseudomonas aeruginosa 35. Folia Microbiologica; 55(1): 61-67.
Eriksen, N.T. (2008). Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Microbiology and Biotechnology; 80(1):1-14.
Estrada, J.P.; Bescós, P.B.; Del Fresno, A.V. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Il farmaco; 56(5-7): 497-500.
Fazilati, M.; Latifi, A.M.; Salavati, H.; Choopani, A. (2016). Antioxidant Properties of Spirulina. Journal of Applied Biotechnology Reports; 3(1): 345-351.
Gavanji, S.; Larki, B. (2017). Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Journal of Integrative Medicine; 23(3): 201-207.
Ghasemi, Y.; Yazdi, M.T.; Shokravi, S.; Soltani, N.; Zarrini, G. (2003). Antifungal and antibacterial activity of paddy-fields cyanobacteria from the north of Iran. Journal of Sciences Islamic Republic of Iran; 14(3): 203-210.
Harrigan, G.G.; Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Nagle, D.G.; Paul, VJ. (1999). Symplostatin 2:a dolastatin 13 analogue from the marine cyanobacterium Symploca hydnoides. Journal of Natural Products; 62(4): 655-658.
Izadi, M.; Fazilati, M. (2018). Extraction and purification of phycocyanin from spirulina platensis and evaluating its antioxidant and anti-inflammatory activity. Asian Journal of Green Chemistry; 2: 364-379.
Khan, Z.; Bhadouria, P.; Bisen, P. (2005). Nutritional and therapeutic potential of Spirulina. Pharmaceutical Biotechnology; 6(5): 373-379.
Kumar, A.; Saini, P.; Shrivastava, J.N. (2009). Production of peptide antifungal antibiotic and biocontrol activity of Bacillus subtilis. Indian Journal of Experimental Biology; 47: 57-62.
Kunert, J. (1972). Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experintia; 28(9): 1025-1026.
Li, H.B.; Cheng, K.W.; Wong, C.C.; Fan, K.W.; Chen, F.; Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry; 102(3): 771-776.
Manolakaki, D.; Velmahos, G.; Kourkoumpetis, T.; Chang, Y.; Alam, H.B.; De Moya, M.M.; et al. (2010). Candida infection and colonization among trauma patients. Virulence; 1(5): 367-375.
Mayer, A.M.; Hamann, M.T. (2004). Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Marine Biotechnology; 6(1): 37-52.
Mishra, P.; Mishra, R.R.; Tiwari, M.; Shukla, P.; Singh, A.; Shukla, H.S. (2014). Implication of endophytic metabolite and their derivatives in cancer chemotherapy: a prospective study. Advances in Endophytic Research, Springer; 373-388.
Mishra, P.; Prasad, S.M. (2015). Evaluation of Anticandidal Activities of Spirulina Metabolite against Candida Albicance. International Journal of Pharmacology Science Research; 6(3):1000-1007.
Mundt, S.; Kreitlow, S.; Nowotny, A.; Effmert, U. (2001). Biochemical and pharmacological investigations of selected cyanobacteria. International Journal of Hygiene and Environmental Health; 203(4): 327-334.
Murugan, T. (2011). Screening for Antifungal and Antiviral activity of C-phycocyanin from Spirulina Platensis.
Muthulakshmi, M.; Saranya, A.; Sudha, M.; Selvakumar, G. (2012). Extraction, partial purification, and antibacterial activity of phycocyanin from Spirulina isolated from fresh water body against various human pathogens. Journal of Algal Biomass Utilization; 3(3): 7-11.
Okigbo, R.N.; Mbajiuka, C.S.; Njoku, C.O. (2005). Antimicrobial potentials of (UDA) Myopias aesthetical and Acetum gratissimum L. on some pathogens of man. Int J Mole Medi Adv Sci; 1: 392-397.
Ozdemir, G.; Ulku Karabay, N.; Dalay, M.C.; Pazarbasi, B. (2004). Antibacterial activity of volatile component and various extracts of Spirulina platensis. Journal of Natural Product Derivatives; 18(9): 754-577.
Patil, G.; Chethana, S.; Madhusudhan, M.C.; Raghavarao, K. (2008). Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioress Technol; 99: 7393-7396.
Patil, G.; Chethana, S.; Sridevi, A.; Raghavarao, K. (2006). Method to obtain C-phycocyanin of high purity. Journal of Chromatography A; 1127 (1-2): 76-81.
Qureshi, M.; Garlich, J.; Kidd, M. (1996). Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacology and Immunotoxicology; 18(3): 465-476.
Ramamurthy, V.; Raveendran, S.; Thirumeni, S.; Krishnaveni, S. (2012). Antimicrobial activity of heterocytic cyanobacteria. International Journal of Advanced Life Sciences; 1: 32-39.
Reddy, M.C.; Subhashini, J.; Mahipal, S.; Bhat, V.B.; Reddy, P.S.; Kiranmai, G.; et al. (2003). C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochemical and Biophysical research; 304(2):385-392.
Reis, A.; Mendes, A.; Lobo-Fernandes, H.; Empis, J.; Novais, J.M. (1998). Production, extraction and purification of phycobiliproteins from Nostoc sp. Bioresource Technology; 66(3):181-187.
Romay, C.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. (2003). C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein and Peptide Science; 4(3): 207-216.
Sarada, R.; Pillai, M.G.; Ravishankar, G.A. (1999). Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry; 34(8): 795-801.
Shanmuga, P.K.; Gnanamani, A.; Radhakrishnan.; N.B.M. (2002). Antimicrobial activity of Daturaalba. Indian Drugs; 39: 113-116.
Soltani, M.; Khosravi, A.R.; Sarfallah, A. (2015). The effects of Spirulina on nitric oxide production in peritoneal macrophages of Balb/C mice with systemic candidiasis. Journal of Advanced Research; 3.
Soni, B.; Trivedi, U.; Madamwar, D. (2008). A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresource Technology; 99(1): 188-194.
Stewart, D.E.; Farmer, F.H. (1984). Extraction, identification, and quantitation of phycobiliprotein pigments from phototrophic plankton. Limnology and Oceanography; 29(2): 392-397.
Sudhir, P.R.; Pogoryelov, D.; Kovacs, L.; Garab, G.; Murthy, S.D. (2005). The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. BMB Reports; 38(4): 481-485.
Vinay, K.; Usmani, S.K.; Shrivastava, J.N. (2009). Antifungal activity of Spirulina platensis (Geitler) against some human pathogenic fungi. Vegetos; 22(2): 83-89.
Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chemistry; 87(3): 401-406. | ||
آمار تعداد مشاهده مقاله: 994 تعداد دریافت فایل اصل مقاله: 671 |