
تعداد نشریات | 41 |
تعداد شمارهها | 1,190 |
تعداد مقالات | 10,230 |
تعداد مشاهده مقاله | 19,286,091 |
تعداد دریافت فایل اصل مقاله | 13,326,866 |
Solution of Fractional Optimal Control Problems with Noise Function Using the Bernstein Functions | ||
Control and Optimization in Applied Mathematics | ||
دوره 4، شماره 1، مهر 2019، صفحه 37-51 اصل مقاله (385.72 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2020.33909.1078 | ||
نویسندگان | ||
Ali Nemati* 1؛ Ali Alizadeh2؛ Fahime Soltanian2 | ||
1Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran. | ||
2Department of Mathematics, University of Payame Noor, Tehran, Iran | ||
چکیده | ||
This paper presents a numerical solution of a class of fractional optimal control problems (FOCPs) in a bounded domain having a noise function by the spectral Ritz method. The Bernstein polynomials with the fractional operational matrix are applied to approximate the unknown functions. By substituting these estimated functions into the cost functional, an unconstrained nonlinear optimization problem is achieved. In order to solve this optimization problem, the Matlab software and its optimization toolbox are used. In the considered FOCP, the performance index is expressed as a function of both state and control functions. The method is robust enough because of its computational consistency in the presence of the noise function. Moreover, the proposed scheme has a good pliability satisfying the given initial and boundary conditions. At last, some test problems are investigated to confirm the efficiency and applicability of the new method. | ||
کلیدواژهها | ||
Optimization؛ Spectral method؛ Noise function؛ Fractional optimal control؛ Operational matrix | ||
عنوان مقاله [English] | ||
حل مسائل کنترل بهینه کسری دارای تابع نویز با استفاده از توابع برنشتاین | ||
نویسندگان [English] | ||
علی نعمتی1؛ علی علیزاده2؛ فهیمه سلطانیان2 | ||
1دانشگاه آزاد اسلامی اردبیل | ||
2دانشگاه پیام نور، تهران، ایران | ||
چکیده [English] | ||
این مقاله، روشی عددی برپایه روش طیفی ریتز را برای حل دستهای از مسائل کنترل بهینه کسری در دامنه محدود دارای نویز بکار میبرد. پایههای چندجملهای برنشتاین به همراه ماتریس عملیاتی مشتق برای تخمین توابع نامعین حالت و کنترل مورد استفاده قرار می گیرند. با جایگذاری توابع تخمینی کنترل و حالت در تابع هدف، یک مساله بهینهسازی نامقید ایجاد میشود. برای حل و شبیهسازی آن از نرمافزار \lr{Matlab} و جعبه ابزارهای آن استفاده خواهد شد. در مسائل مورد بحث، تابع هدف شامل توابع کنترل و توابع حالت میباشد. روش پیشنهادی با توجه به سازگاری آن در مدیریت شرایط اولیه و مرزی و نویز، قابل اعتماد و اطمینان است. برای نشان دادن کارآیی و کاربردی بودن روش، چند مثال کاربردی در انتهای مقاله آورده شده است. | ||
کلیدواژهها [English] | ||
بهینه سازی, روش طیفی, تابع نویز, مساله کنترل بهینه کسری, ماتریس عملیاتی | ||
مراجع | ||
bibitem{1} Magin R. L. (2006). ``Fractional calculus in bioengineering'', Chicago: Begell House.
bibitem{2} Jumarie G. (2008). ``Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions'', Applied Mathematical Modelling, 32(5), 836--859.
bibitem{3} Tricaud C., Chen Y. Q. (2012). ``Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems'', Londo: Springer-Verlag.
bibitem{4} Oldham K. B., Spanier J. (1974). ``The fractional calculus'', Academic Press, New York.
bibitem{5} Monje C. A., Chen Y., Vinagre B. M., Xue D., Feliu-Batlle V. (2010). ``Fractional-order Systems and Controls: Fundamentals and Applications'', Springer-Verlag, London.
bibitem{6} Jajarmi A., Baleanu D. (2017). ``Suboptimal control of fractional-order dynamic systems with delay argument'', Journal of Vibration and Control, 24(12), 2430--2446. %doi: 10.1177/1077546316687936.
bibitem{7} Kilbas A. A., Srivastava, H. M., Trujillo J. J. (2006). ``Theory and Applications of Fractional Differential Equations'', 204, Elsevier Science.
bibitem{8} Kowalski E. (2006). ``Bernstein Polynomials and Brownian Motion'', The American Mathematical Monthly, 113(10), 865--886. %doi: 10.2307/27642086.
bibitem{9} Hasan M. M., Tangpong X. W., Agrawal O. P. (2011). ``Fractional optimal control of distributed systems in spherical and cylindrical coordinates", Journal of Vibration and Control, 18, 1506--1525.
bibitem{10} "{O}zdemir N., Agrawal O. P., Karadeniz D., İskender B. B. (2009). ``Fractional optimal control problem of an axis-symmetric diffusion-wave propagation", Physica Scripta, T136 014024.
bibitem{10b} Nemati A., Yousefi S. A., Soltanian F., Saffar-Ardabili J. (2016). ``An efficient numerical solution of fractional optimal control problems by using the Ritz method and Bernstein operational matrix'', Asian Journal of Control, 18(6), 2272--2282.
bibitem{10c} Mamehrashi K., Nemati A. (2019). ``A new approach for solving infinite horizon optimal control problems using Laguerre functions and Ritz spectral method'', International Journal of Computer Mathematics. %DOI: 10.1080/00207160.2019.162,
bibitem{11} Bhrawy A. H., Doha, E. H., Tenreiro Machado, J. A., Ezz-Eldien, S. S. (2015). ``An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index. Asian Journal of Contro''l, 17(6), 2389--2402. %doi: 10.1002/asjc.1109.
bibitem{12} Nemati A., Mamehrashi, K. (2019). ``The Use of the Ritz Method and Laplace Transform for Solving 2D Fractional Order Optimal Control Problems Described by the Roesser Model'', Asian Journal of Control, 21(4), 1--13.
bibitem{12b} Taherpour V., Nazari M., Nemati A. (2020). ``A new numerical Bernoulli polynomial method for solving fractional optimal control problems with vector components", Computational Methods for Differential Equations, Accepted paper.%DOI:10.22034/cmde.2020.34992.1598
bibitem{13} Agrawal O. P., Baleanu D. (2007). ``A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems'', Journal of Vibration and Control, 13(9-10), 1269--1281. %doi: 10.1177/1077546307077467
bibitem{14} Maleki M., Hashim I., Abbasbandy S., Alsaedi A. (2015). ``Direct solution of a type of constrained fractional variational problems via an adaptive pseudospectral method'', Journal of Computational and Applied Mathematics, 283, 41--57. %doi: https://doi.org/10.1016/j.cam.2015.01.019
bibitem{14b} Nemati A., Yousefi S. A. (2016). ``A numerical method for solving fractional optimal control problems using Ritz method'', Journal of Computational and Nonlinear Dynamics, 11, 1--7.
bibitem{15} Lotfi A., Yousefi S. A., Dehghan M. (2013). ``Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule'', Journal of Computational and Applied Mathematics, 250, 143--160. %doi: https://doi.org/10.1016/j.cam.2013.03.003
bibitem{16} Doha E. H., Bhrawy A. H., Baleanu D., Ezz-Eldien S. S., Hafez R. M. (2015). ``An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems'', Advances in Difference Equations, 2015(1), 15. %doi: 10.1186/s13662-014-0344-z
bibitem{17} Lotfi A., Dehghan M., Yousefi S. A. (2011). ``A numerical technique for solving fractional optimal control problems'', Computers & Mathematics with Applications, 62(3), 1055--1067. %doi: https://doi.org/10.1016/j.camwa.2011.03.044
bibitem{18} Trujillo J. J., Ungureanu V. M. (2018). ``Optimal control of discrete-time linear fractional-order systems with multiplicative noise'', International Journal of Control, 91(1), 57--69. %doi: 10.1080/00207179.2016.1266520
bibitem{18a} Ahadpour S., Nemati A., Mirmasoudi F., Hematpour N. (2018). ``Projective synchronization of piecewise nonlinear Chaotic maps'', Theoretical and Mathematical Physics, 197(3), 1856--1864.
bibitem{19} FujishlGe S., Sawaragl Y. (1975). ``Optimal control for linear continuous-time systems with general noises based upon sampled data. International Journal of Systems Science'', 6(12), 1111--1118. %doi: 10.1080/00207727508941890
bibitem{20} Saadatmandi A. (2014). ``Bernstein operational matrix of fractional derivatives and its applications'', Applied Mathematical Modelling, 38(4), 1365--1372. %doi: https://doi.org/10.1016/j.apm.2013.08.007
bibitem{20b} Nemati A. (2017). ``Numerical solution of 2D fractional optimal control problems by the spectral method along with Bernstein operational matrix'', International Journal of Control, %https://doi.org/10.1080/00207173429.2017.1367.
bibitem{21} Farin G. (1993). ``Curves and Surfaces for CAGD'', Academic Press, Boston.
bibitem{22} R. T. F., T. N. T. G. (2003). ``Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains''.
bibitem{23} G. M. P. (2003). ``Interpolation and Approximation by Polynomials''.
bibitem{24} Samko S. G., Kilbas A. A., Marichev O. I. (1993). ``Fractional Integrals and Derivatives. Theory and Applications'', Gordon and Breach Science Publishers, Yverdon.
bibitem{25} Wu Z., Sun X., Ma L. (2013). ``Sampling scattered data with Bernstein polynomials: stochastic and deterministic error estimates. Advances in Computational Mathematics'', 38(1), 187--205. %doi: 10.1007/s10444-011-9233-0
bibitem{26} Rivlin T. J. (1981). ``An Introduction to the Approximation of Functions'', Courier Corporation, New York.
bibitem{27} J"{u}ttler B. (1998). ``The dual basis functions for the Bernstein polynomials. Advances in Computational Mathematics'', 8(4), 345--352. %doi: 10.1023/A:1018912801267
bibitem{28} Rudas I. J., Tar J. K., Patkai B. (2006). ``Compensation of dynamic friction by a fractional order robust controller'', Paper presented at the IEEE International Cconference on Computational Cybernetics, Budapest.
bibitem{29} Petrovacki N., Jelicic Z. D. (2006). ``Optimal transient response of erbium-doped fiber amplifiers Paper presented at the IEEE international conference on numerical simulation of semiconductor optoelectronic devices'', Singapore.
bibitem{30} Kreyszig E. (1978). ``Introductory Functional Analysis with Applications'', John Wiley and Sons, Inc., New York.
bibitem{31} Shakoor P., Ricardo A., Delfim F. M. T. (2013). ``Fractional order optimal control problems with free terminal time'', Journal of Industrial & Management Optimization, 10(2), 363--381. | ||
آمار تعداد مشاهده مقاله: 434 تعداد دریافت فایل اصل مقاله: 339 |