تعداد نشریات | 41 |
تعداد شمارهها | 1,138 |
تعداد مقالات | 9,760 |
تعداد مشاهده مقاله | 17,878,477 |
تعداد دریافت فایل اصل مقاله | 12,493,461 |
Enlarging the Region of Attraction for Nonlinear Systems through the Sum-of-Squares Programming | ||
Control and Optimization in Applied Mathematics | ||
دوره 4، شماره 2، فروردین 2019، صفحه 19-37 اصل مقاله (558.38 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2020.53510.1141 | ||
نویسندگان | ||
Jahangir Alizadeh1؛ Hamid Khaloozadeh* 2 | ||
1Department of Mathematics, Payame Noor University (PNU), P.O. Box. 19395-3697, Tehran, Iran | ||
2Professor of Systems and Control Engineering, KN Toosi University of Technology, Tehran, Iran | ||
چکیده | ||
In the present study, a novel methodology is developed to enlarge the Region of Attraction (ROA) at the point of equilibrium of an input-affine nonlinear control system. Enlarging the ROA for non-polynomial dynamical systems is developed by designing a nonlinear state feedback controller through the State-Dependent Riccati Equation (SDRE). Consequently, its process is defined in the form of Sum-of-Squares (SOS) optimization problem with control and non-control constraints. Of note, the proposed technique is effective in estimating the ROA for a nonlinear system functioning on polynomial or non-polynomial dynamics. In the present study, the application of the proposed scheme are shown by numerical simulations. | ||
کلیدواژهها | ||
State-dependent Riccati equation؛ Region of attraction؛ Sum-of-squares programming؛ Lyapunov function | ||
عنوان مقاله [English] | ||
توسیع ناحیه جذب سیستمهای غیرخطی با استفاده از برنامه نویسی مجموع مربعات | ||
نویسندگان [English] | ||
جهانگیر علیزاده1؛ حمید خالوزاده2 | ||
1مرکز تحصیلات تکمیلی دانشگاه پیام نور تهران | ||
2دانشگاه خواجه نصیر طوسی-تهران | ||
چکیده [English] | ||
در این پژوهش روشی جدید برای توسیع ناحیه جذب نقطه تعادل یک سیستم کنترل غیرخطی آفین ارائه شده است. برای توسیع ناحیه جذب سیستمهای دینامیکی غیر چندجملهای به کمک طراحی کنترلکننده فیدبک حالت غیرخطی از معادله ریکاتی وابسته به حالت استفاده شده است. فرایند بدست آوردن ناحیه جذب باعث ایجاد یک مسئله بهینه سازی مجموع مربعات با محدودیتهای کنترلی و غیر کنترلی میشود. نکته قابل توجه این است که روش پیشنهادی برای تخمین ناحیه جذب سیستمهای غیرخطی چندجملهای و غیر چندجملهای کارا است. همچنین در این مطالعه کاربرد روش پیشنهادی با شبیه سازیهای عددی نشان داده شده است. | ||
کلیدواژهها [English] | ||
معادله ریکاتی وابسته به حالت, ناحیه جذب, فاکتور شکل, برنامهنویسی مجموع مربعات, تابع لیاپانوف | ||
مراجع | ||
bibitem{a1-1} Qiang B., Zhang L. (2018). lqlq Output feedback control design to enlarge the domain of attraction of a supercavitating vehicle subject to actuator saturationrqrq, Transactions of the Institute of Measurement and Control, 40 (10), 3189-3200.
bibitem{a1-2} Azizi S., Torres L. A. B., Palhares R. M. (2018). lqlq Regional Robust Stabilization and Domain of Attraction Estimation for MIMO Uncertain Nonlinear Systems with Input Saturationrqrq , International Journal of Control, 91 (1), 215-229.
bibitem{a1-3} Jerbi H. (2017). lqlq Estimations of the Domains of Attraction for Classes of Nonlinear Continuous Polynomial Systemsrqrq, Arabian Journal for Science and Engineering ,42(7), 2829-2837.
bibitem{a1-4} Amato F., Calabrese F. et al. (2011). qq{Stability analysis of nonlinear quadratic systems via polyhedral Lyapunove finctions}, Automatica, 47, 614-617.
bibitem{a1-5} Jarvis-Wloszek Z. W., ( 2003). qq{Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization}, Berkeley, University of California.
bibitem{a1-6} Tan W., Packard A. (2006). qq{Stability Region Analysis using Sum of Squares Programming}, In American Control Conference, 2297-2302.
bibitem{a1-7} Tan W. (2006). qq{Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming, Dissertation (Ph.D)}, University of California, Berkeley.
bibitem{a1-8} Rapoport L. B., Morozov Yu. V. (2008). qq{Numerical methods for estimation of the attraction domain in the problem of control of the wheeled robot}, Autom. Remote Control, 69(1), 13-26.
bibitem{a1-9} Khodadadi L., Samadi B., Khaloozadeh H. (2013). qq{Estimation of region of attraction for polynomial nonlinear systems: A numerical method}, ISA Transactions, 53, 25-32.
bibitem{a1-10} Moghaddam R. Pariz K., N., Shanechi H. M., Kamyad A. V. (2014). qq{Estimating the robust domain of attraction and directional enlargement of attraction domain via Markov models}, Optim. Control Appl. Meth., 35, 21-40.
bibitem{a1-11} Korda M., Henrion D., Jones C. N. (2014). qq{Controller design and region of attraction estimation for nonlinear dynamical systems}, . arXiv: 1310.2213.
bibitem{a1-12} Najafi E., Lopes G. A., Babuska R. (2014). qq{Balancing a legged robot using state-dependent Riccati equation control}, In: Proceedings of the 19th IFAC World Congress, pp. 2177-2182.
bibitem{a1-13} Baier R., Gerdts M. (2009). qq{A computational method for nonconvex reachable sets using optimal control}, In Proceedings of the European Control Conference, 23-26.
bibitem{a1-14} Khlebnikov M. V. (2015). qq{Estimates of the Attraction Domain of Linear Systems under L2-Bounded Control}, Autom. Remote Control, 76 (3), 369-376.
bibitem{a1-15} Lim´on D., Alamo T., Camacho E. F. (2005). qq{Enlarging the domain of attraction of MPC controllers}, Automatica, 41 (4), 629 – 635.
bibitem{a1-16} Pesterev A. V. ( 2017). qq{Attraction Domain Estimate for Single-Input Affine Systems with Constrained Control}, Automation and Remote Control, 78 (4), 581-594.
bibitem{a1-17} Pesterev A. V. (2019). qq{Estimation of the Attraction Domain for an Affine System with Constrained Vector Control Closed by the Linearizing Feedback}, Automation and Remote Control, 80 (5), 840-855.
bibitem{a1-18} Haghighatnia S., Moghaddam R. K. (2012) . qq{Directional Extension of the Domain of Attraction to Increase Critical clearing time of nonlinear systems}, Journal of American Science, 8 444-449.
bibitem{a1-19} Chesi G. (2004). qq{Design of controllers enlarging the domain of attraction: a quasi-convex approach}, IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, September.
bibitem{a1-20} Hashemzadeh F., Yazdanpanah M. J. (2006). qq{Semi-Global Enlargement of Domain of Attrction for a Class of Affine Nonlinear Systems}, In Proceedings of the IEEE International Conference on Control Applications, 1-6.
bibitem{a1-21} Chen X. Y., Li C. J., Lu J. F., Jing Y. W. (2012). qq{The domain of attraction for aSEIR epidemic model based on sum of square optimization}, Bulletin of the Korean mathematical Society, 49 (3), 517-528.
bibitem{a1-22} Li C. , Ryoo C., Li N., Cao L. (2009). qq{Estimating the domain of attraction via moment matrices}, Bull. Korean Math. Soc. 46 (6), 1237–1248.
bibitem{a1-23} Prajna S., Papachristodoulou A., Seiler P., Parrilo P.A. (2004). qq{SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, User’s guide}, Dynamical Systems.
bibitem{a1-24} Topcu, U., Packard, A. K., Seiler, P., Balas, G. J. (2010). qq{Robust region-ofattraction estimation}, IEEE Transactions on Automatic Control, 55 (1), 137–142.
bibitem{a1-25} Batmani Y., Khaloozadeh H. (2013). qq{Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter}, Optimal Control, Applications and Methods, 34 (5), 562-577.
bibitem{a1-26} Batmani Y., Khaloozadeh H. (2013). qq{On the design of human immunodeficiency virus treatment based on a non-linear time-delay model}, IET Systems Biology, 10.1049/iet-syb.2013.0012.
bibitem{a1-27} Batmani Y., Khaloozadeh H. (2013). qq{On the design of suboptimal sliding manifold for a class of nonlinear uncertain time-delay systems}, International Journal of Systems Science.
bibitem{a1-28} Batmani Y., Khaloozadeh H. (2013). qq{Optimal drug regimens in cancer chemotherapy: a multi- objective approach}, Computers in Biology and Medicine, 43, 2089-2095.
bibitem{a1-29} Batmani Y., Khaloozadeh H. (2013). qq{On the design of observer for nonlinear time-delay systems}, Asian Journal of Control, 10.1002/asjc.795.
bibitem{a1-30} Çimen T. (2010). qq{Systematic and effective design of nonlinear feedback controllers via state dependent Riccati equation (SDRE) method}, Annual Reviews in control, 34 (1), 3-5.
bibitem{a1-31} Çimen T. (2012). qq{Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis}, Journal of Guidance, Control, and Dynamics, 35 (4), 1025-1047.
bibitem{a1-32} Chen H., Allg"{o}wer F. (1998). qq{A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability}, Automatica, 34 (10), 1205-1217.
bibitem{a1-33} Franze G., Casavola A., Famularo D., Garone E. (2008). qq{An off-line MPC strategy for nonlinear systems based on SOS programming}, IFAC Proceedings Volumes, 41 (2), 10063-10068.
bibitem{a1-34} Cox D. A., Little J., O'Shea D. (2004). qq{Using algebraic geometry}, Little, Springer Verlag, Berlin.
bibitem{a1-35} Najafi E., Babuska R., Lopes G. A. (2016). qq{A fast sampling method for estimating the domain of attraction}, Nonlinear Dyn, 86, 823–834. | ||
آمار تعداد مشاهده مقاله: 325 تعداد دریافت فایل اصل مقاله: 372 |