- Srinidhi, S. Sudalaimani, K. Giribabu, S. S. Basha and C. Suresh, 2020 Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode, Microchim. Acta 187 (2020) 1.
- Choudhary and H. Hansen, Human health perspective of environmental exposure to hydrazines: A review, Chemosphere 37 (1998) 801.
- Vernot, J. MacEwen, R. Bruner, C. Haun, E. Kinkead, D. Prentice, A. Hall III, R. Schmidt, R. Eason R and G. Hubbard, Long-term inhalation toxicity of hydrazine, Fundam. Appl. Toxicol. 5 (1985) 1050.
- H. Jazayeri, T. Aghaie, A. Avan, A. Vatankhah and M. R. S. Ghaffari, Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion), Sens. Bio Sens. Res. 20 (2018) 1.
- W. Mo, B. Ogorevc, X. Zhang and B. Pihlar, Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all‐solid potentiometric microsensor for hydrazine, Electroanalysis 12 (2000) 48.
- Hao, Y. Zhang, K. Ruan, W. Chen, B. Zhou, X. Tan, Y. Wang, L. Zhao, G. Zhang and P. Qu, A naphthalimide-based chemodosimetric probe for ratiometric detection of hydrazine, Sens. Actuator B Chem. 244 (2017) 417.
- M. Sun, L. Bai and D. Q. Liu, A generic approach for the determination of trace hydrazine in drug substances using in situ derivatization-headspace GC–MS, J. Pharm. Biomed. Anal. 49 (2009) 529.
- Shaikshavali, T. M. Reddy, T. V. Gopal, G. Venkataprasad, V. S. Kotakadi, V. Palakollu and R. Karpoormath, A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of Epinephrine in human serum and pharmaceutical formulation, Colloid Surf. A: Physicochem. Eng. Asp. 584 (2020) 124038.
- Mutyala and J. Mathiyarasu, Preparation of graphene nanoflakes and its application for detection of hydrazine, Sens. Actuator B Chem. 210 (2015) 692.
- Gerard, A. Chaubey and B. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron. 17 (2002) 345.
- Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson and S. J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets, Appl.Catal. B: Environ. 148 (2014) 22.
- Rao, Q. Sheng and J. Zheng, Novel nanocomposite of chitosan-protected platinum nanoparticles immobilized on nickel hydroxide: facile synthesis and application as glucose electrochemical sensor, J. Chem. Sci. 128 (2016) 1367.
- Amani, A. Khoshroo and M. Rahimi-Nasrabadi, Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol, Microchim. Acta 185 (2018) 79.
- Zou, X. Wei, Z. Zong, X. Li, Z. Wang and X. Wang, A novel enzymatic biosensor for detection of intracellular hydrogen peroxide based on 1-aminopyrene and reduced graphene oxides, J. Chem. Sci. 131 (2019) 1.
- H. Jung, D. S. Cheon, F. Liu, K. B. Lee and T. S. Seo, A graphene oxide based immuno‐biosensor for pathogen detection, Angew. Chem. 122 (2010) 5844.
- J. Feminus, R. Manikandan, S. S. Narayanan and P. Deepa, Determination of gallic acid using poly (glutamic acid): graphene modified electrode, J. Chem. Sci. 131 (2019) 11.
- Suganthi and K. Pushpanathan, Paramagnetic nature of Mn doped ZnS nano particles in opto electronic device application, J. Mater. Sci.: Mater. Electron. 27 (2016) 10089.
- Lv, J. Zhao, B. Situ, B. Li, W. Ma, J. Liu, Z. Wu, W. Wang, X. Yan and L. Zheng, A target-triggered dual amplification strategy for sensitive detection of microRNA, Biosens. Bioelectron. 83 (2016) 250.
- Yu, W. Wu, X. Pan, Q. Zhao, X. Wei and Q. Lu, High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets, Sensors 15 (2015) 2709.
- Shamkhalichenar and J-W Choi, Review-Non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide, J. Electrochem. Soc. 167 (2020) 037531.
- A. Raymundo‐Pereira, M. Baccarin, O. N. Oliveira Jr and B. C. Janegitz, Thin films and composites based on graphene for electrochemical detection of biologically‐relevant molecules, Electroanalysis 30 (2018) 1888.
- Beitollahi, F. Movahedifar, S. Tajik and S. Jahani, A review on the effects of introducing CNTs in the modification process of electrochemical sensors, Electroanalysis 31 (2019) 1195.
- Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding and F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49 (2010) 2114.
- Britto, K. Santhanam and P. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg. 41 (1996) 121.
- R. Madhura, G. G. Kumar and R. Ramaraj, Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application, J. Chem. Sci. 131 (2019) 1.
- Mohammadi, N. Arsalani, A. G. Tabrizi, S. E. Moosavifard, Z. Naqshbandi and L. S. Ghadimi, Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors, Chem. Eng. J. 334 (2018) 66.
- Bai, Y. Li, P. Jin, J. Wang and L. Liu, Facile preparation 3D ZnS nanospheres-reduced graphene oxide composites for enhanced photodegradation of norfloxacin, J. Alloys Compd. 729 (2017) 809.
- Nikzad, M. R. Khanlary and S. Rafiee, Structural, optical and morphological properties of Cu-doped ZnS thin films synthesized by sol–gel method, Appl. Phys. A 125 (2019) 1.
- Kashinath, K. Namratha and K. Byrappa, Sol-gel assisted hydrothermal synthesis and characterization of hybrid ZnS-RGO nanocomposite for efficient photodegradation of dyes, J. Alloys Compd. 695 (2017) 799.
- De Menezes, F. Ferreira, B. Silva, E. Simonetti, T. Bastos, L. Cividanes and G.Thim, Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites, J. Mater. Sci. 53 (2018) 14311.
- H. Lee, E. Cho, S. H. Jeon and J. R. Youn, Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers, Carbon 45 (2007) 2810.
- Pan and X. Liu, ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties, J. Solid State Chem. 191 (2012) 51.
- Sookhakian, Y. Amin, R. Zakaria, W. J. Basirun, M. Mahmoudian, B. Nasiri-Tabrizi, S. Baradaran and M. Azarang, Significantly improved photocurrent response of ZnS-reduced graphene oxide composites, J. Alloys Compd. 632 (2015) 201.
- Chen,H. Li, M. Chen, W. Li, Z. Yuan and R. Snyders, Visible-light-driven photocatalytic activities of monodisperse ZnS-coated reduced graphene oxide nanocomposites, Mater. Chem. Phys. 227 (2019) 368.
- Sharp, M. Petersson and K. Edström, Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface, J. Electroanal. Chem. Interf. Electrochem. 95 (1979) 123.
- Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem. Interf. Electrochem. 101 (1979) 19.
- J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications 2nd ed. (Wiley: New York), 2001.
- Galus, Fundamentals of electrochemical analysis (Ellis Horwood: New York), 1976.
- Mazloum-Ardakani, H. Mohammadian-Sarcheshmeh, A. Khoshroo and M. Abdollahi-Alibeik, Thiosemicarbazide derivative-functionalized carbon nanotube for simultaneous determination of isoprenaline and piroxicam, J. Anal. Sci. Technol. 8 (2017).
- J. Wu, T. Zhou, Q. Wang and A. Umar, Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection, Sens. Actuator B Chem. 224 (2016) 878.
- Xu, Y. Liu, S. Xie and L. Wang, Electrochemical preparation of a three dimensional PEDOT–CuxO hybrid for enhanced oxidation and sensitive detection of hydrazine, Anal. Methods 8 (2016) 316.
- A. Ismail, F. A. Harraz , M. Faisal, A. M. El-Toni, A. Al-Hajry and M. Al-Assiri, A sensitive and selective amperometric hydrazine sensor based on mesoporous Au/ZnO nanocomposites, Mater. Des. 109 (2016) 530.
- Sohail, M. Altaf, N. Baig, R. Jamil, M. Sher and A. Fazal, A new water stable zinc metal organic framework as an electrode material for hydrazine sensing, New J. Chem. 42 (2018) 12486.
- Asadi, S. N. Azizi and S. Ghasemi, Preparation of Ag nanoparticles on nano cobalt-based metal organic framework (ZIF-67) as catalyst support for electrochemical determination of hydrazine, J. Mater. Sci.: Mater. Electron. 30 (2019) 5410.
- Zhang, Y. Zhang, D. Zhang, S. Li, C. Jiang and Y. Su, Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase, Sens. Actuator B Chem. 285 (2019) 607.
- Zhang, H. Liu, M. Dou, F. Wang, J. Liu, Z. Li and J. Ji, Synthesis and characterization of Co3O4/multiwalled carbon nanotubes nanocomposite for amperometric sensing of hydrazine, Electroanalysis 27 (2015) 1188.
- Saeb and K. Asadpour-Zeynali, Facile synthesis of TiO2@ PANI@ Au nanocomposite as an electrochemical sensor for determination of hydrazine, Microchem. J. 160 (2021) 105603.
- Mazloum-Ardakani, Z. Alizadeh, L. Hosseinzadeh, B.B. F. Mirjalili and N. Salehi, An electrochemical based on functionalized carbon nanotube with pyrazole derivative for determination of HZ, IJAC, 6 (2019) 49-56.
-
|