تعداد نشریات | 41 |
تعداد شمارهها | 1,131 |
تعداد مقالات | 9,682 |
تعداد مشاهده مقاله | 17,640,544 |
تعداد دریافت فایل اصل مقاله | 12,308,986 |
کاربرد نانوذرات Fe2O3 به عنوان کاتالیزور جدید در سنتز سهجزئی و تک ظرف مشتقهای 2- آمینو-H4-پیران-3- کربونیتریل در حلال آب | ||
دوفصلنامه شیمی آلی | ||
دوره 1، شماره 1، اردیبهشت 1401، صفحه 149-162 اصل مقاله (921.91 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
کلثوم ملایی نژاد1؛ سید حسین بنی طبا* 2 | ||
1دانشجوی کارشناسی ارشد رشته شیمی آلی دانشگاه پیام نور. ایران. | ||
2استادیار شیمی آلی دانشگاه پیام نور. ایران. | ||
چکیده | ||
با توجه به اصول شیمی سبز، نانوذرات مغناطیسی فضای جدیدی را برای معرفی سیستمهای کاتالیزوری مؤثر، از جهت عملکرد بهتر و جداسازی کاتالیزور در روشهای گوناگون سنتز مواد آلی، ایجاد کردهاند. همچنین، استفاده از حلّالهای سبز و دوستدار محیطزیست، به همراه نانواکسیدهای فلزی، در تهیه ترکیبهای ناجور حلقه از اهمیت ویژهای برخوردار است. در این کار پژوهشی تراکم سهجزئی میان کوجیک اسید، مالونونیتریل و آلدهیدهای آروماتیک، در حضور کاتالیزور نانوذرات Fe2O3 در حلّال آب، بهمنظور تهیه مشتقهای 2-آمینو-H4 پیران-3-کربونیتریل، بهعنوان یک روش کاملاً جدید ارائه شده است. استفاده از نانوذرات اکسید آهن (III) اثر کاتالیزوری بسیار بالایی را نسبت به دیگر نانواکسیدهای فلزی مثل TiO2، MgO، ZrO2، SiO2 نشان داده است. استفاده از حلّال آب بهعنوان یک حلّال دوستدار محیطزیست، دارای زمان کوتاه واکنش و بازده بالا از مزایای این کار پژوهشی است. ساختار محصولات را توسط IR و 1H-NMR بررسی کردهایم. | ||
کلیدواژهها | ||
نانوذرات اکسید آهن (III)؛ 2-آمینو-H4-پیران-3-کربونیتریل؛ واکنش سهجزئی؛ شرایط تک ظرف؛ شیمی سبز؛ محیط آبی | ||
عنوان مقاله [English] | ||
The Application of Fe2O3 Nanoparticles as New Catalyst in Three Component and One-Pot Synthesis of 2-Amino-4H-Pyrane-3-Carbonitrile in Water | ||
نویسندگان [English] | ||
Kolsoom Molayinezhad1؛ Seyed Hossein Banitaba2 | ||
1M.A Student of organic chemistry, Payam Noor University, Iran. | ||
2Departement of chemistry, Payam Noor University, Tehran, Iran. | ||
چکیده [English] | ||
According to the green chemistry’s approaches, magnetite nanoparticles (MNPs) open up new fields to introduce an efficient system for better catalyst activity and facilitating catalyst recovery in different procedures. Therefore, in this paper, a mild and simple reaction to synthesize substituted pyranopyranes via multi-component reaction catalyzed by Fe2O3 nanoparticles as new method is reported. Using Fe2O3 nanoparticles show better catalytic activity towards other nanometal oxides such as TiO2, MgO, ZrO2, and SiO2. Also the use of water as green and environmental friendly solvent, high yields and short routine are the advantages of this work. Furthermore, the structural of the new product was deducted by IR, 1HNMR spectroscopy. | ||
کلیدواژهها [English] | ||
Fe2O3 Nanoparticles, 2-Amino-Dihydropyrano [3, 2-b] pyran-3-Carbonitriles, Three-Component Reaction, One-Pot Conditions, Green Chemistry, Aqueous Media | ||
مراجع | ||
[1]. Lupi, C. & Pilone, D. (2004). “In (III) hydrometallurgical recovery from secondary materials by solvent extraction”. J. Environ. Chem. Eng. 2, 100-104.
[2]. Gałuszka, A., Migaszewski, Z. & Namiesnik, J. (2013). “The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices”. Trend in Anal chem. 50, 78-84.
[3]. Hulme, C. & Gore, V. (2003). “Multi-component reactions: emerging chemistry in drug discovery from xylocain to crixivan”. Curr. Med. Chem. 10, 51-80.
[4]. Domling, A. & Ugi, I. (2000). “Multicomponent Reactions with Isocyanides”. Angew. Chem., Int. Ed. 39, 3168-3210.
[5]. Biggs-Houck, J.E., Younai, A. & Shaw, J.T. (2010). “Recent advances in multicomponent reactions for diversityoriented synthesis”. Curr. Opin. Chem. Biol. 14, 371-382.
[6]. Michael, C. & Das Sarma, K. (2004). “Multicomponent Reactions Are Accelerated in Water”. J. Am. Chem. Soc. 126, 444-445. [7]. Poor Heravi, M.R. & Fakhr, F. (2011). “Ultrasound-promoted synthesis of 2-amino-6-(arylthio)-4-arylpyridine-3,5-dicarbonitriles using ZrOCl2·8H2O/NaNH2 as the catalyst in the ionic liquid [bmim]BF4 at room temperature”. Tetrahedron Lett. 5, 6779-6782.
[8]. Banitaba, S.H., Safari, J. & Dehghan Khalili. S. (2013). “Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis”. Ultrason. Sonochem. 20, 401-407.
[9]. Wangelin, V., Neumann, A. J., Godes. H.D., Klaus, S. & Beller, M. (2003). “Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide–Aldehyde Mixtures”. Chem. Eur. J. 9, 4286-4294.
[10]. Matus, K.J.M., Xiao, X. & Zimmerman J.B. (2012). “Green chemistry and green engineering in China: drivers, policies and barriers to innovation”. J. Clean. Prod. 32, 193-203.
[11]. Dunn, P.J. (2012). “The importance of Green Chemistry in Process Research and Development”. Chem. Soc. Rev. 41, 1452-1461.
[12]. Tundo, P., Anastas, P., StC. Black, D., Breen, J. Collins, T., Memoli, S., Miyamoto, J., Polyakoff. M., Anastas, P.T. & Warner, J.C. (1998). Green Chemistry: Theory and Practice, New York. 7. 112-117.
[13]. Anastas, P.T. & Zimmerman, J. B. (2003). “Peer Reviewed: Design Through the 12 Principles of Green Engineering”. Environ. Sci. Technol. 37, 94A-101A.
[14]. Cui, Z., Beach, E.S. & Anastas, P. T. (2011). “Green chemistry in China”. Pure.Appl. Chem. 83. 1379-1390.
[15]. Galuszka, A., Migaszewsk, Z. & Namies nik, J. (2013). “The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices”. Trends in Ana. chem. 50. 78-84.
[16]. Clark, J.H. (1999). “Green Chemistry.; challenges and opportunities”. Green Chemistry. 7. 1-8
[17]. Ellis, G.P., Weissberger, A. & Taylor, E.C. (Eds.), (1977). John Wiley, New York, NY. 11, 139-142.
[18]. Hafez, E.A., Elnagdi, M.H., Elagemey, A.G.A. & El-Taweel, F.M.A.A. (1987). “Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c] pyrano[3,2-c] quinoline Derivatives”. Heterocycles. 26, 903-907.
[19]. Khafagy, M.M., El-Wahas, A.H.F.A., Eid, F.A. & El-Agrody, A.M. (2002). “Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities”. Farmaco. 57, 715-722.
[20]. Smith, W.P., Sollis, L.S., Howes, D.P., Cherry, C.P., Starkey, D.I. & Cobley, N.K. (1998). “Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure−Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-carboxamides”. J. Medi. Chem. 41. 787-797.
[21]. Hiramoto, K., Nasuhara, A., Michiloshi, K., Kato, T. & Kikugawa, K. (1997). “DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine”. Mutat. Res. 395. 47-56.
[22]. Bianchi, G. & Tava, A. (1987). “Synthesis of (2R)-(+)-2,3-Dihydro-2,6-dimethyl-4H-pyran-4-one, a Homologue of Pheromones of a Species in the Hepialidae Family”. Agricultural and Biolog Chem. 51, 2001-2002.
[23]. Eiden, F. & Denk, F., (1991). ‘Synthesis of CNS-activity of pyran derivatives: 6,8-dioxabicyclo(3,2,1)octane”. Arch Pharm. 324. 353-345.
[24]. Green, G.R., Evans, J.M., Vong, A.K., Katritzky, A.R., Rees, C.W. & Scriven E.F.V. (Eds.). (1995). Comprehensive Heterocyclic Chem. 5. 469-472.
[25]. Yu, L.Q., Liu, F. & You, Q.D. (2009). “One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives Catalyzed by Amines in Aqueous Media”. Org. Prep. Proced. 41, 77-82.
[26]. Khaksar, S., Rouhollahpour, A. & Mohammadzadeh Talesh, S. (2012). “A facile and efficient synthesis of 2-amino-3-cyano-4H-chromenes and tetrahydrobenzo [b]pyrans using 2,2,2-trifluoroethanol as a metal-free and reusable medium”. J. Flou. Chem. 141, 11-15.
[27]. Davoodnia, A., Allameh, S., Fazli, S. & T-Hoseini, N. (2011). “One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo [b] pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable”. Chem Papers. 65, 714-720.
[28]. Safari, J., Banitaba, S.H. & Dehghankhalili S. (2013). “Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b] pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis”. Ultrason Sonochem. 20, 401-407.
[29].A Sanchez, F., Hernandez, P.C., Cruz, Y., Alcaraz, J., Tamariz, F. & Vazquez. M.A. (2012). “Infrared Irradiation–Assisted Multicomponent Synthesis of 2–Amino–3–cyano–4H–pyran Derivatives”. J. Mex. Chem. Soc. 56, 121-127.
[30]. Kulesza, A., Ebetino, F.H., Mishra, R.K., Cross-Doersen, D. & Mazur, A.W. (2003). “Synthesis of 2,4,5-Trisubstituted Tetrahydropyrans as Peptidomimetic Scaffolds for Melanocortin Receptor Ligands”. Organic Lett. 5, 1163-1166.
[31]. Armesto, D., Horspool, W.M., Martin, N., Ramos, A. & Seoane, C. (1987). “A novel photochemical ring contraction of 4H-pyrans. A new route to selectively substituted cyclobutenes”. J. Chem. Soc., Chem. Commun. 54, 1231-1232.
[32]. Abdel-Latif, F.F. (1990). Indian Journal of Chem. 29B. 664.
[33]. Kemnitzer, W., Kasibhatla, S., Jiang, S., Zhang, H., Zhao, J., Jia, S., Xu, L., Crogan- Grundy, C., Denis, R., Barriault, N., Vaillancourt, L., Charron, S., Dodd, J., Attardo, G., Labrecque, D., Lamothe, S., Gourdeau, H., Tseng, B., Drewea, J. & Caia, S.X. (2005). “Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions”. Bioorganic and Medi Chem Lett. 15. 4745-4751.
[34]. Konkoy, C.S., Fick, D.B., Cai, S.X., Lan, N.C. & Keana, J.F.W. (2001). “Substituted 5-oxo-5,6,7,8-tetrahydro-4H-1-benzopyrans and benzothiopyrans and the use thereof as potentiators of AMPA”. Chem. Abstr. 134. 29313-29315.
[35]. Hu, H., Qiu, F.i., Ying, A., Yang, J. & Meng, H. (2014). “An Environmentally Benign Protocol for Aqueous Synthesis of Tetrahydrobenzo[b]Pyrans Catalyzed by Cost-Effective Ionic Liquid”. Int. J. Mol. Sci. 15, 6898-6909.
[36]. Bonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). “Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives”. Eur. J. Med. Chem. 28, 517–520
| ||
آمار تعداد مشاهده مقاله: 135 تعداد دریافت فایل اصل مقاله: 175 |