| تعداد نشریات | 46 |
| تعداد شمارهها | 1,226 |
| تعداد مقالات | 10,526 |
| تعداد مشاهده مقاله | 20,906,267 |
| تعداد دریافت فایل اصل مقاله | 14,203,641 |
Optimal Harvesting of Three Species Intraguild Predation Model with Ratio-dependent Functional Response | ||
| Control and Optimization in Applied Mathematics | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 14 آبان 1404 اصل مقاله (1.19 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.30473/coam.2025.75850.1343 | ||
| نویسندگان | ||
| Subramani Magudeeswaran1؛ Muthurathinam Sivabalan2؛ Mehmet Yavuz* 3، 4؛ Dharmendra Kumar Singh5؛ Kannimuthu Giridharan1 | ||
| 1Department of Mathematics, Sree Saraswathi Thyagaraja College, Pollachi, Tamilnadu, India | ||
| 2Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamilnadu, India | ||
| 3Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Turkiye | ||
| 4Department of Applied Mathematics and Informatics, Kyrgyz-Turkish Manas University, Bishkek 720038, Kyrgyzstan | ||
| 5Department of Mathematics, School of Basic Sciences, CSJM University, Kanpur, India | ||
| چکیده | ||
| In this study, we fabricate and investigate a three-species intraguild predation model with a ratio-dependent functional response. We also incorporate harvesting efforts into both intraguild prey and intraguild predators. Then, we analyze the dynamical behavior of the proposed model by taking the harvesting rate as the bifurcation parameter. We precisely outline the prerequisites for the proposed model's existence, stability, and bifurcation near the equilibrium points. It contributes to a better understanding of the impacts of harvesting on the survival or extinction of one or more species in the proposed model. Furthermore, we derive the suggested model's bionomic equilibrium and optimum harvesting policy by using the \textit{Pontryagin's maximum principle}. Finally, we provide some numerical simulations to validate the analytical results. In addition, we give some graphical representations to validate our results. | ||
تازه های تحقیق | ||
| ||
| کلیدواژهها | ||
| Local stability؛ Hopf-bifurcation؛ Intraguild predation؛ Optimal harvesting | ||
| مراجع | ||
|
[1] Abdullah, S.N., Safuan, H.M., Nor, M.E., Jamaian, S.S., Aman, F., Shab, N.F.M. (2018). “Harvesting effects on population model of competitive interaction with shared biotic resource”. 25th National Symposium on Mathematical Sciences (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence, Malaysia, 1974(1), doi: https://doi.org/10.1063/1.5041609. [2] Abou-nouh, H., El Khomssi, M. (2025). “Towards a viable control strategy for a model describing the dynamics of corruption”. Mathematical Modelling and Numerical Simulation with Applications, 5(1), 1-17, doi: https://doi.org/10.53391/mmnsa.1400075. [3] Akhavan Ghassabzade, F., Bagherpoorfard, M. (2024). “Mathematical modeling and optimal control of carbon dioxide emissions”. Control and Optimization in Applied Mathematics, 9(1), 195-202, doi: https://doi.org/10.30473/coam.2023.67777.1233. [4] Arditi, R., Ginzburg, L.R. (1989). “Coupling in predator-prey dynamics: Ratio-dependence”. Journal of theoretical biology, 139(3), 311–326, doi: https://doi.org/10.1016/S0022-5193(89)80211-5. [5] Bahri, M. (2014). “Stability analysis and optimal harvesting policy of prey-predator model with stage structure for predator”. Applied Mathematical Sciences, 8(159), 7923–7934, doi: http://dx.doi.org/10.12988/ams.2014.410792. [6] Beddington, J.R. (1975). “Mutual interference between parasites or predators and its effect on searching efficiency”. The Journal of Animal Ecology, 44(1), 331–340, doi: https://doi.org/10.2307/3866. [7] Boulaaras, S., Yavuz, M., Alrashedi, Y., Bahramand, S., Jan, R. (2025). “Modeling the co-dynamics of vector-borne infections with the application of optimal control theory”. Discrete and Continuous Dynamical Systems-S, 18(5), 1331-1352, doi: https://doi.org/10.3934/dcdss.2024109. [8] Chakraborty, K., Chakraborty, M., Kar, T.K. (2011). “Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay”. Nonlinear Analysis: Hybrid Systems, 5(4), 613–625, doi: https://doi.org/10.1016/j.nahs.2011.05.004. [9] Chakraborty, K., Chakraborty, M., Kar, T.K. (2011). “Optimal control of harvest and bifurcation of a prey–predator model with stage structure”. Applied Mathematics and Computation, 217(21), 8778–8792, doi: https://doi.org/10.1016/j.amc.2011.03.139. [10] Clark, C.W. (1974). “Mathematical bioeconomics”. In: van den Driessche, P. (eds) Mathematical Problems in Biology. Lecture Notes in Biomathematics, vol 2. Springer, Berlin, Heidelberg, doi: https://doi.org/10.1007/978-3-642-45455-4_3. [11] Collera J.A., Balilo, A.T. (2018). “Dynamics of a delayed intraguild predation model with harvesting”. Symposium on Mathematics (SYMOMATH), Indonesia, 1937(1), 020006, doi: https://doi.org/10.1063/1.5026078. [12] Crowley, P.H., Martin, E.K. (1989). “Functional responses and interference within and between year classes of a dragonfly population”. Journal of the North American Benthological Society, 8(3), 211–221, doi: https://doi.org/10.2307/1467324. [13] Danane, J., Yavuz, M., Yıldız, M. (2023). “Stochastic modeling of three-species prey–predator model driven by Lévy Jump with mixed Holling-II and Beddington–DeAngelis functional responses”. Fractal and Fractional, 7(10), 751, doi: https://doi.org/10.3390/fractalfract7100751. [14] Debnath, S., Majumdar, P., Sarkar, S., Ghosh, U. (2022). “Global dynamics of a prey–predator model with Holling type III functional response in the presence of harvesting”. Journal of Biological Systems, 30(01), 225–260, doi: https://doi.org/10.1142/S0218339022500073. [15] Ebrahimipour, M., Mirhosseini-Alizamini, S.M. (2024). “Optimal adaptive sliding mode control for a class of nonlinear affine systems”. Control and Optimization in Applied Mathematics, 9(2), 123-138, doi: https://doi.org/10.30473/coam.2023.67868.1236. [16] Eskandari, Z., Naik, P.A., Yavuz, M. (2024). “Dynamical behaviors of a discrete-time prey-predator model with harvesting effect on the predator”. Journal of Applied Analysis and Computation, 14(1), 283-297, doi: https://doi.org/10.11948/20230212. [17] Fatima, B., Yavuz, M., Ur Rahman, M.U., Al-Duais, F.S. (2023). “Modeling the epidemic trend of Middle Eastern respiratory syndrome coronavirus with optimal control”. Mathematical Biosciences and Engineering, 20(7), 11847-11874, doi: https://doi.org/10.3934/mbe.2023527. [18] Fatima, B., Yavuz, M., Ur Rahman, M.U., Althobaiti, A., Althobaiti, S. (2023). “Predictive modeling and control strategies for the transmission of Middle East respiratory syndrome coronavirus”. Mathematical and Computational Applications, 28(5), 98, doi: https://doi.org/10.3390/mca28050098. [19] Ganguli, C., Kar, T., Mondal, P. (2017).“ Optimal harvesting of a prey–predator model with variable carrying capacity”. International Journal of Biomathematics, 10(5), 1750069, doi: https://doi.org/10.1142/S1793524517500693. [20] Ghosh, B., Pal, D., Legović, T., Kar, T.K. (2018). “Harvesting induced stability and instability in a tri-trophic food chain”. Mathematical Biosciences, 304, 89-99, doi: https://doi.org/10.1016/j.mbs.2018.08.003. [21] Gupta, R., Banerjee, M., Chandra, P. (2012). “Bifurcation analysis and control of Leslie–Gower predator–prey model with Michaelis–Menten type prey-harvesting”. Differential Equations and Dynamical Systems, 20(3), 339–366, doi: https://doi.org/10.1007/s12591-012-0142-6. [22] Hassell, M., Varley, G. (1969). “New inductive population model for insect parasites and its bearing on biological control”.Nature, 223(5211), 1133–1137, doi:https://doi.org/10.1038/2231133a0. [23] Holling, C.S. (1959). “The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly”. The Canadian Entomologist, 91(5), 293–320, doi: https://doi.org/10.4039/Ent91293-5. [24] Jana, S., Guria, S., Ghorai, A., Kar, T.K. (2021). “Complex dynamics of a prey-predator system incorporating functional response dependent prey refuge with harvesting”. Journal of Applied Nonlinear Dynamics, 10(3), 493–512, doi: https://doi.org/10.1155/2025/354998343. [25] Joshi, H., Yavuz, M. (2026). “A novel fractional-order model and analysis of cancer-immune system interaction in an avascular environment with an efficient control mechanism”. Journal of Computational and Applied Mathematics, 473, 116888, doi: https://doi.org/10.1016/j.cam.2025.116888. [26] Kar, T., Chattopadhyay, S.K. (2010). “A dynamic reaction model of a prey-predator system with stage-structure for predator”. Modern Applied Science, 4(5), 183, doi: https://doi.org/10.5539/mas.v4n5p183. [27] Kuang Y., Beretta, E. (1998). “Global qualitative analysis of a ratio-dependent predator–prey system”. Journal of Mathematical Biology, 36, 389–406. doi: https://doi.org/10.1007/s002850050105. [28] Lotka, A.J. (1925). “Elements of physical biology”. Nature, 116, 461, doi:https://doi.org/10.1038/116461b0. [29] Lv, Y., Zhang, Z., Yuan, R., Pei, Y. (2014). “Effect of harvesting and prey refuge in a prey–predator system”. Journal of Biological Systems, 22(01), 133–150, doi: https://doi.org/10.1142/S0218339014500089. [30] Magudeeswaran, S., Vinoth, S., Sathiyanathan, K., Sivabalan, M. (2022). “Impact of fear on delayed three species food-web model with Holling type-II functional response”. International Journal of Biomathematics, 15(4), doi: https://doi.org/10.1142/S1793524522500140. [31] Murray, J.D. (2002). “Mathematical biology: I. An introduction (3rd ed.)”. Springer New York, NY, doi: https://doi.org/10.1007/b98868. [32] Mustapha, U.T., Maigoro, Y.A., Yusuf, A., Qureshi, S. (2024). “Mathematical modeling for the transmission dynamics of cholera with an optimal control strategy”. Bulletin of Biomathematics, 2(1), 1-20, doi: https://doi.org/10.59292/bulletinbiomath.2024001. [33] Nabil, H., Hamaizia, T. (2024). “A three-dimensional discrete fractional-order HIV-1 model related to cancer cells, dynamical analysis and chaos control”. Mathematical Modelling and Numerical Simulation with Applications, 4(3), 256-279, doi: https://doi.org/10.53391/mmnsa.1484994. [34] Naik, P.A., Eskandari, Z., Shahkari, H.E., Owolabi, K.M. (2023). “Bifurcation analysis of a discrete-time prey-predator model”. Bulletin of Biomathematics, 1(2), 111-123, doi: https://doi.org/10.59292/bulletinbiomath.2023006. [35] Naik, P.A., Eskandari, Z., Yavuz, M., Huang, Z. (2025). “Bifurcation results and chaos in a two-dimensional predator-prey model incorporating Holling-type response function on the predator”. Discrete and Continuous Dynamical Systems-S, 18(5), 1212-1229, doi: https://doi.org/10.3934/dcdss.2024045. [36] Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J. (2022). “Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect”. Journal of Computational and Applied Mathematics, 413, 114401, doi: https://doi.org/10.1016/j.cam.2022.114401. [37] Nkeki, C., Mbarie, I.a. (2025). “On a mathematical model and the efficacy of control measures on the transmission dynamics of chickenpox”. Bulletin of Biomathematics, 3(1), 37-61, doi: https://doi.org/10.59292/bulletinbiomath.1707079. [38] Panja, P. (2021). “Dynamics of a predator–prey model with Crowley–Martin functional response, refuge on predator and harvesting of super–predator”. Journal of Biological Systems 29(03), 631–646, doi: https://doi.org/10.1142/S0218339021500121. [39] Perko, L. (2013). “Differential equations and dynamical systems”. Springer New York, NY, doi: https://doi.org/10.1007/978-1-4613-0003-8. [40] Safuan, H.M., Musa, S.B. (2016). “Food chain model with competition interaction in an environment of a biotic resource”, 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23), Malaysia, 1750, 030015, doi: https://doi.org/10.1063/1.4954551. [41] Safuan, H.M., Sidhu, H., Jovanoski, Z., Towers, I. (2013). “Impacts of biotic resource enrichment on a predator–prey population”. Bulletin of mathematical biology, 75(10), 1798–1812, doi: https://doi.org/10.1007/s11538-013-9869-7. [42] Samanta, S., Chattopadhyay, J. (2013). “Effect of kairomone on predator–prey dynamics—A delay model”. International Journal of Biomathematics, 6(5), doi: https://doi.org/10.1142/S1793524513500356. [43] Sen, M., Banerjee, M., Morozov, A. (2012). “Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect”. Ecological Complexity, 11, 12-27, doi: https://doi.org/10.1016/j.ecocom.2012.01.002. [44] Singh, M.K., Poonam, P. (2025). “Bifurcation analysis of an additional food-provided predator-prey system with anti-predator behavior”. Mathematical Modelling and Numerical Simulation with Applications, 5(1), 38-64, doi: https://doi.org/10.53391/mmnsa.1496827. [45] Shang, Z., Qiao, Y., Duan, L., Miao, J. (2021).“ Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting. Mathematics and Computers in Simulation, 190, 976-1002, doi: https://doi.org/10.1016/j.matcom.2021.06.024. [46] Valinejad, A., Babaei, A., Zarei, Z. (2024). “An adaptive time-stepping algorithm to solve a stochastic Lotka-Volterra competition system with time-variable delays”. Control and Optimization in Applied Mathematics, 9(2), 187-199, doi: https://doi.org/10.30473/coam.2024.67940.1237. [47] Vinoth, S., Sivasamy, R., Sathiyanathan, K., Grienggrai Rajchakit, G., Hammachukiattikul, P., Vadivel, R., Gunasekaran, N. (2021). “Dynamical analysis of a delayed food chain model with additive Allee effect. Advances in Difference Equations, 54(2021), doi: https://doi.org/10.1186/s13662-021-03216-z. [48] Vinoth, S., Sivasamy, R., Sathiyanathan, K., Unyong, B., Vadivel, R., Gunasekaran, N. (2022). “A novel discrete-time Leslie–Gower model with the impact of Allee effect in predator population”. Complexity, 2022(1), doi: https://doi.org/10.1155/2022/6931354. [49] Volterra, V. (1926). “Fluctuations in the abundance of a species considered mathematically”. Nature, 118, 558-560, doi: http://dx.doi.org/10.1038/118558a0. | ||
|
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 5 |
||