
تعداد نشریات | 45 |
تعداد شمارهها | 1,219 |
تعداد مقالات | 10,473 |
تعداد مشاهده مقاله | 20,217,839 |
تعداد دریافت فایل اصل مقاله | 13,905,756 |
Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method | ||
Control and Optimization in Applied Mathematics | ||
مقاله 6، دوره 2، شماره 1، تیر 2017، صفحه 77-91 اصل مقاله (533.85 K) | ||
نوع مقاله: Research Article | ||
نویسنده | ||
Seyed Mehdi Mirhosseini-Alizamini* | ||
Department of Mathematics, Payame Noor University (PNU), Tehran, Iran | ||
چکیده | ||
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and more straightforward. In order to use the proposed method, a control design algorithm with low computational complexity is presented. Through the finite iterations of the proposed algorithm, a suboptimal control law is obtained for the problems. Finally, the obtained results have been compared with the exact solution of the controlled harmonic oscillator and variational iteration method, so that the high accuracy of the results is clear. | ||
کلیدواژهها | ||
Suboptimal control؛ Harmonic oscillator؛ Damping؛ Homotopy perturbation method | ||
عنوان مقاله [English] | ||
حل عددی نوسانگر هارمونیک کنترل شده با استفاده از روش اختلال هموتوپی | ||
نویسندگان [English] | ||
سید مهدی میرحسینی عالیزمینی | ||
استادیار ریاضی کاربردی، تهران، گروه ریاضی، دانشگاه پیام نور | ||
چکیده [English] | ||
مسأله نوسانگر هارمونیک کنترل شده با دمپینگ، دستهی مهمی از مسائل کنترل بهینه است، که نقش مهمی در زمینه پدیده نوسانی در سیستمهای مهندسی غیرخطی ایفا میکند. در این مقاله، برای حل این مسأله، روش تحلیلی ارائه میشود. این رویکرد بر اساس روش اختلال هموتوپی پایه ریزی شده است. فرایند حل آسان و ساده است. برای این منظور، یک الگوریتم طراحی کنترل با پیچیدگی محاسبات کم، پیشنهاد میشود. هم چنین، به کمک تکرارهای متناهی از الگوریتم پیشنهادی، یک قانون کنترل زیر بهینه برای مسأله به دست میآید. در نهایت، نتایج به دست آمده با جواب دقیق مسأله نوسانگر هارمونیک و سایر نتایج حاصله از آثار قبلی مقایسه شده، که به وضوح، دقت بالای نتایج آشکار است. | ||
کلیدواژهها [English] | ||
کنترل زیر بهینه, نوسانگر هارمونیک, دمپینگ, روش اختلال هموتوپی | ||
مراجع | ||
[1] Ayati Z., Biazar J., Ebrahimi S. (2015). ``A new homotopy perturbation method for solving two-dimensional reaction–diffusion brusselator system'', Journal of Mathematics and Computer Science, 15, 195-203.
[2] Banks H. T., Burns J. A. (1978). ``Hereditary control problem: Numerical methods based on averaging approximations'', SIAM Journal on Control and Optimization, 16 (2), 169-208.
[3] Dooren R. V., Vlassenbroeck J. (1982). `` Chebyshev series solution of the controlled duffing oscillator'', Journal of Computational Physics, 47, 321-329.
[4] El-kady M., Elbarbary E. M. E. (2002). ``A Chebyshev expansion method for solving nonlinear optimal control problems'', Applied Mathematics and Computation, 129, 171-182.
[5] Elnagar G., Khamayseh A. (1997). ``On the optimal spectral Chebyshev solution of a controlled nonlinear dynamical system'', IMA Jounal of Applied Mathematics, 58, 147-157.
[6] Feki M. (2003). ``Observer-based exact synchronization of ideal and mismatched chaotic systems'', Physics Letters A, 309, 53-60.
[7] Ghorbani A. (2009). ``Beyond Adomian polynomials: He polynomials'', Chaos, Solutions & Fractals, 39, 1486-1492.
[8] He, J. H. (1999). ''Homotopy perturbation technique'', Computer Methods in Applied Mechanics and Engineering, 178, 257-262.
[9] He, J. H. (1999). ``Variational iteration method-a kind of nonlinear analytical technique: some examples'', International Journal of Nonlinear Mechanics, 699-708
[10] He J. H. (2006). ``Some asymptotic methods for strongly nonlinear equations'', International Journal of Modern Physics B, 20 (10), 1141-1199.
[11] Haddadi N., Ordokhani Y., Razzaghi M. (2012). ``Optimal control of delay systems by using a hybrid functions approximation'', Journal of Optimization Theory and Applications, 153, 338-356.
[12] Jia W., He X., Guo L. (2017). ``The optimal homotopy analysis method for solving linear optimal control problems'', Applied Mathematical Modelling, 45, 865-880.
[13] Kharatishvili G. L. (1961). ``The maximum principle in the theory of optimal process with time-lags'', Doklady Akademii Nauk SSSR, 136, 39-42.
[14] Khellat F., Vasegh N. (2011). ``Suboptimal control of linear systems with delays in state and input by orthogonal basis'', International Journal of Computer Mathematics, 88(4), 781-794.
[15] Maimistov A. I. (2000). ``Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium'', Quantum Electronics, 30, 287-304.
[16] Maimistov A. I. (2003). ``Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order duffing model'', Optics and Spectroscopy, 94, 251-257.
[17] Marzban H. R., Razzaghi M. (2003). ``Numerical solution of the controlled duffing oscillator by hybrid functions'', Applied Mathematics and Computation, 140, 179-190.
[18] Mirhosseini-Alizamini S. M., Effati S., Heydari A. (2015). ``An iterative method for suboptimal control of linear time-delayed systems'', Systems & Control Letters, 82, 40-50.
[19] Mirhosseini-Alizamini S. M., Effati S., Heydari A. (2016). ``Solution of linear time-varying multi-delay systems via variational iteration method'', Journal of Mathematics and Computer Science, 16, 282-297.
[20] Rad J. A., Kazem S., Parand K. (2012). `` Numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions'', Computers and Mathematics with Applications, 64, 2049-2065.
[21] Razzaghi M., Elnagar G. (1994). ``Numerical solution the controlled duffing oscillator by the pseudospectral method'', Journal of Computatational and Applied Mathematics, 56, 253-261.
[22] Ravindra B., Mallik A. K. (1998). ``Dissipative control of chaos in non-linear vibrating systems'', Journal of Sound and Vibration, 211, 709-715.
[23] Saberi nik H., Zahedi M. S., Buzhabadi R., Effati S. (2013). ``Homotopy perturbation method and He's polynomials for solving the porous media equation'', Computational Mathematics and Modeling, 24 (2), 279-292.
[24] Scaramozzino S. (2013).``Optimal control of time-varying harmonic Oscillator at resonance'', New York.
[25] Shirazian M., Effati S. (2012). ``Solving a class of nonlinear optimal control problems via He's variational iteration method'', International Journal of Control, Automation and Systems, 10 (2), 249-256.
[26] Stokes J. J. (1950). ``Nonlinear Vibrations'', Intersciences, New York.
[27] Yang S. P., Xiao A. G. (2011). `` Of the variational iteration method for solving multi-delay differential equations'', Computers and Mathematics with Applications, 61, 2148-2151.
[28] Yu Z. H. (2008). ``Varaitional iteration method for solving the multi-pantograph delay equation'', Physics Letters A, 372, 6475-6479.
[29] Wang G., Zhenga W., He S. (2002).``Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator'', Signal Processing, 82, 103-115.
[30] Zeeman E. (1976). ``Duffing equation in brain modelling'', Bull IMA, 12, 207-214. | ||
آمار تعداد مشاهده مقاله: 1,224 تعداد دریافت فایل اصل مقاله: 644 |