تعداد نشریات | 41 |
تعداد شمارهها | 1,112 |
تعداد مقالات | 9,512 |
تعداد مشاهده مقاله | 17,148,815 |
تعداد دریافت فایل اصل مقاله | 12,012,167 |
بررسی تنش شوری در آفتابگردان با تمرکز بر مکانیسمها و رویکردها | ||
فصلنامه علمی زیست فناوری گیاهان زراعی | ||
مقاله 2، دوره 11، شماره 4 - شماره پیاپی 40، اسفند 1401، صفحه 15-40 اصل مقاله (833.31 K) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.30473/cb.2023.68177.1911 | ||
نویسندگان | ||
ساناز خلیفانی1؛ رضا درویش زاده* 1؛ فریبا مرسلی آقاجری2 | ||
1گروه تولید و ژنتیک گیاهی دانشکده کشاورزی دانشگاه ارومیه. ارومیه، ایران. | ||
2گروه اصلاح نباتات دانشکده کشاورزی دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
آفتابگردان (.Helianthus annuus L) یک محصول مهم دانه روغنی شناخته شده است که به دلیل روغن با کیفیت بالا و غنی از اسیدلینولئیک در سراسر جهان کشت میشود. مطالعه حاضر مروری بر اثرات تنش شوری بر صفات مورفولوژیک و فیزیولوژیک، مکانیسمهای مقاومت و روشهای اصلاحی و زراعی برای مقابله با تنش شوری در آفتابگردان است. آفتابگردان به عنوان گیاه نیمه متحمل به شوری رتبهبندی میشود. اثرات منفی تنش شوری بر آفتابگردان شامل قهوهای شدن نوک ریشهها، کاهش رشد لپهها و ریشه، سطح برگ، تجمع ماده خشک، عملکرد و میزان روغن دانه است. همچنین تنش شوری منجر به کاهش جذب CO2، سرعت تعرق، هدایت روزنهای و ظرفیت فتوسنتزی در آفتابگردان میشود. از واکنشهای مقاومت به تنش شوری در آفتابگردان میتوان به تعدیل بیان ATPaseهای حساس به Oubain از طریق کلسیم، به تاخیر انداختن تخریب پروتئینهای غشایی، افزایش سروتونین و ملاتونین، افزایش بیان نیتریک اکسید، افزایش S-nitrosylation پروتئینهای سیتوزولی، افزایش محتوای پراکسید لیپید، فعالیت گلوتاتیون پراکسیداز و فراوانی هم اکسیژناز-1 (HO-1) در سلولهای اطراف کانالهای ترشحی اشاره کرد. مهمترین رویکردهای اصلاح برای تحمل تنش شوری در آفتابگردان عبارتند از: شناسایی ژنهای مقاوم به شوری HT089، HT175، HT185، HT215، HT216 و HT227، شناسایی گونه H. paradoxus به عنوان مقاومترین گونه، تولید لاینهای HA429 و HA430 متحمل به شوری، انتقال ژن TaNHX2 گندم به آفتابگردان و شناسایی ژنهای دخیل در تحمل به تنش شوری با فناوری توالیابی نسل جدید. نتایج این بررسیِ گسترده در دستیابی به یک برنامه جامع برای بهبود پایدار عملکرد و کیفیت روغن آفتابگردان تحت تنش شوری مهم خواهد بود. | ||
کلیدواژهها | ||
آفتابگردان (.Helianthus annuus L)؛ تغییرات مورفولوژیکی و فیزیولوژیکی؛ رویکردای اصلاحی مقاومت؛ مقاومت به تنش شوری | ||
موضوعات | ||
اصلاح نباتات مولکولی | ||
عنوان مقاله [English] | ||
Studying salinity stress in sunflower with focusing on mechanisms and approaches | ||
نویسندگان [English] | ||
Sanaz Khalifani1؛ Reza Darvishzadeh1؛ Fariba Morsali Aghajari2 | ||
1Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran. | ||
2Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. | ||
چکیده [English] | ||
A B S T R A C T Sunflower (Helianthus annuus L.) is an important oilseed crop that is cultivated worldwide because of its high-quality oil and be rich in linoleic acid. The present study is a review of the effects of salinity on morphological and physiological traits, resistance mechanisms, breeding, and agronomic methods to deal with salinity tolerance in sunflower. Sunflower is classified as semi-tolerant species. The negative effects of salt stress on sunflower include browning of root tips, reduction of cotyledons and root proliferation, leaf surface, accumulation of dry matter, yield, and seed oil content. Salt stress also leads to decrease in CO2 absorption, transpiration rate and stomatal conductance, and photosynthetic capacity in sunflower. The resistance reactions to salinity stress in sunflower include: modulating the expression of oubain-sensitive ATPases through calcium, delaying the degradation of membrane proteins of oil bodies, increase serotonin and melatonin, increase the expression of nitric oxide, increase S-nitrosylation of cytosolic proteins, increased content of lipid peroxide, activity of glutathione peroxidase, and the abundance of heme oxygenase-1 (HO-1) in the cells around the secretory channels . Among the important breeding approaches to cope salinity stress in sunflower are the identification of HT089, HT175, HT185, HT215, HT216, and HT227 salinity resistance genes, the identification of H. paradoxus as the most salinity resistant species, the production of HA429 and HA430 lines tolerant to salinity, the transfer of the TaNHX2 gene from wheat to sunflower that improved its salinity tolerance and the identification of genes involved in salinity stress in sunflower by next generation sequencing technology. The results of this extensive study will be important in achieving a comprehensive plan for sustainable improvement of yield and quality of sunflower oil under salt stress conditions. | ||
کلیدواژهها [English] | ||
Morphological, Physiological mechanism, Resistance improvement approach, Resistance to salinity stress, Sunflower (Helianthus annuus L.) | ||
مراجع | ||
Abu Obaid, A. M., Melnyk, A. V., Onychko, V. I., Usmael, F. M., Abdullah, M. J., Rifaee, M. K., & Tawaha, A. M. (2018). Evaluation of six sunflower cultivar for forage productivity under salinity condition.
Achakzai, A.K., K.M. Rahman, M. Yaqoob, A. Sarangzai, M.Y.K. Barozai and M. Din. 2015. Stem and leaf response of sunflower hybrids to salt stress. Pakistan Journal of Botany, 47, 2063-2067.
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18.
Adams, E., & Shin, R. (2014). Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology, 56(3), 231-249.
Adeleke, B. S., & Babalola, O. O. (2020). Oilseed crop sunflower (Helianthus annuus L.) as a source of food: Nutritional and health benefits. Food Science & Nutrition, 8(9), 4666-4684.
Ahmad, P., Abdel Latef, A. A., Hashem, A., Abd_Allah, E. F., Gucel, S., & Tran, L. S. P. (2016). Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 7, 347.
Ahmadpour, S., Sofalian, O., Darvishzadeh, R., & Abbaspour, N. (2018). Preliminary evidence of the associations between DNA markers and morphological characters in sunflower under natural and salt stress conditions. Zemdirbyste-Agriculture, 105(3), 279-286.
Ahmadpour, S., Sofalian, O., Darvishzadeh, R., & Hatamzadeh, H. (2019). Evaluation of yield stability of sunflower inbred lines under salt stress conditions. Journal of Crop Breeding, 11(30), 1-10.
Akram, M. S., Ashraf, M., & Akram, N. A. (2009). Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). Flora-Morphology, Distribution, Functional Ecology of Plants, 204(6), 471-483.
Ali, A., Raddatz, N., Aman, R., Kim, S., Park, H. C., Jan, M., ... & Yun, D. J. (2016). A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiology, 171(3), 2112-2126.
Ali, S. S., Manzoor, Z., Awan, T. H., & Mehdi, S. S. (2006). Evaluation of performance and stability of sunflower genotypes against salinity stress. J. Anim. Pl. Sci, 16(1-2), 47-51.
Ansari, S. B. (2021). Mutation breeding for quality improvement: A case study for oilseed crops shazia bi ansari, aamir raina. Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science, 171.
Anwar-ul-Haq, M., S. Akram, J. Akhtar, M. Saqib, Z.A. Saqib, G.H. Abbasi and M. Jan, )2013(. Morphol- ohysiological characthrization of sunflower genotypes (Helianthus annuus L.) under saline condition. Pakistan Journal of Agricultural Sciences, 50, 49-54.
Arora, D., & Bhatla, S. C. (2015). Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long-distance signaling response to NaCl stress. Plant Signaling & Behavior, 10(10), e1071753.
Arora, D., & Bhatla, S. C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine, 106, 315-328.
Arora, D., Jain, P., Singh, N., Kaur, H., & Bhatla, S. C. (2016). Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Research, 50(3), 291-303.
Ashraf, M. P. J. C., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant science, 166(1), 3-16.
Ashraf, M., & Tufail, M. (1995). Variation in salinity tolerance in sunflower (Helianthus annum L.). Journal of Agronomy and Crop Science, 174(5), 351-362.
Aslam, A., Khan, S., Ibrar, D., Irshad, S., Bakhsh, A., Gardezi, S. T. R., ... & Zuan, A. T. K. (2021). Defensive impact of foliar applied potassium nitrate on growth linked with improved physiological and antioxidative activities in sunflower (Helianthus annuus L.) hybrids grown under salinity stress. Agronomy, 11(10), 2076.
Avni, T., Anupriya, S., Rai, P., Maan, K., & Naryansamy, C. C. N. (2016). Effects of heating and storage on nutritional value of sunflower oil. DU J. Undergrad. Res. Innov., 2, 196-202.
Azevedo Neto, A. D. D., Mota, K. N. A. B., Silva, P. C. C., Cova, A. M. W., Ribas, R. F., & Gheyi, H. R. (2020). Selection of sunflower genotypes for salt stress and mechanisms of salt tolerance in contrasting genotypes. Ciência e Agrotecnologia, 44.
Azhar, M. T., & Wani, S. H. (Eds.). (2021). Wild Germplasm for Genetic Improvement in Crop Plants. Academic Press.
Bajehbaj, A. A. (2010). The effects of NaCl priming on salt tolerance in sunflower germination and seedling grown under salinity conditions. African Journal of Biotechnology, 9(12).
Bakhoum, G. S., Sadak, M. S., & Badr, E. A. E. M. (2020). Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44, 1-11.
Barros, C. V. S. D., Melo, Y. L., Souza, M. D. F., Silva, D. V., & de Macedo, C. E. C. (2019). Sensitivity and biochemical mechanisms of sunflower genotypes exposed to saline and water stress. Acta Physiologiae Plantarum, 41, 1-12.
Basu, S., Kumar, A., Benazir, I., & Kumar, G. (2021). Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiologia Plantarum, 171(4), 502-519.
Berwal, M., & Ram, C. (2018). Superoxide dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. Abiotic and Biotic Stress in Plants, 1-10.
Bhatla, S. C., Gogna, M., Jain, P., Singh, N., Mukherjee, S., & Kalra, G. (2021). Signaling mechanisms and biochemical pathways regulating pollen-stigma interaction, seed development and seedling growth in sunflower under salt stress. Plant Signaling & Behavior, 16(11), 1958129.
Bing, J., Ling, Y., An, P., Xiao, E., Li, C., Song, B., & Wang, Z. (2019). Transcriptomic basis for salt tolerance and disease resistance of silverleaf sunflower revealed by Iso-seq and RNA-seq.
Binici, H., Eken, M., Kara, M., & Dolaz, M. (2013, October). An environment-friendly thermal insulation material from sunflower stalk, textile waste and stubble fibers. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 833-846). IEEE.ati.
Cabello, J. V., Giacomelli, J. I., Gómez, M. C., & Chan, R. L. (2017). The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. Journal of Biotechnology, 257, 35-46.
Çalişkan, S., Tindaş, İ., & Aytekin, R. İ. Molecular studies of sunflower responses to abiotic stresses.
Cellini, B., Zelante, T., Dindo, M., Bellet, M. M., Renga, G., Romani, L., & Costantini, C. (2020). Pyridoxal 5′-phosphate-dependent enzymes at the crossroads of host–microbe tryptophan metabolism. International Journal of Molecular Sciences, 21(16), 5823.
Chandler, J. M., & Jan, C. C. (1984). Identification of salt-tolerant germplasm sources in the Helianthus species. Agron. Abstr. Am. Soc. Agron., Madison, WI, USA, 61.
Cheng, J. D., An, Y. L., & Sun, R. F. (2009). Drought and salt-alkali resistance gene P5CS transformed into sunflower inbred lines. Biotechnol Bull, 3, 65-69.
Craig plett, D. A. R. R. E. N., & Møller, I. S. (2010). Na+ transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626.
Czarnocka, W., & Karpiński, S. (2018). Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biology and Medicine, 122, 4-20.
David, A., Yadav, S., & Bhatla, S. C. (2010). Sodium chloride stress induces nitric oxide accumulation in root tips and oil body surface accompanying slower oleosin degradation in sunflower seedlings. Physiologia Plantarum, 140(4), 342-354.
David, A., Yadav, S., Baluška, F., & Bhatla, S. C. (2015). Nitric oxide accumulation and protein tyrosine nitration as a rapid and long-distance signalling response to salt stress in sunflower seedlings. Nitric Oxide, 50, 28-37.
Dezar, C. A., Fedrigo, G. V., & Chan, R. L. (2005). The promoter of the sunflower HD-Zip protein gene Hahb4 directs tissue-specific expression and is inducible by water stress, high salt concentrations and ABA. Plant Science, 169(2), 447-456.
Di Caterina, R., Giuliani, M. M., Rotunno, T., De Caro, A., & Flagella, Z. (2007). Influence of salt stress on seed yield and oil quality of two sunflower hybrids. Annals of Applied Biology, 151(2), 145-154.
Dong, W., Chen, J., Zhang, B., Tian, Y., & Zhang, W. (2011). Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Research, 123(3), 259-265.
Ebeed, H. T., Hassan, N. M., Keshta, M. M., & Hassanin, O. S. (2019). Comparative analysis of seed yield and biochemical attributes in different sunflower genotypes under different levels of irrigation and salinity. Egyptian Journal of Botany, 59(2), 339-355.
Ebrahimi, R., & Bhatla, S. C. (2012). Ion distribution measured by electron probe X-ray microanalysis in apoplastic and symplastic pathways in root cells in sunflower plants grown in saline medium. Journal of biosciences, 37, 713-721.
Edelist, C., Raffoux, X., Falque, M., Dillmann, C., Sicard, D., Rieseberg, L. H., & Karrenberg, S. (2009). Differential expression of candidate salt‐tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H. annuus and H. petiolaris (Asteraceae). American Journal of Botany, 96(10), 1830-1838.
FAO (Food and Agriculture Organization) Rome. 2016. http://faostat.fao.org/.
Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., ... & Siddique, K. H. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 118, 199-217.
FDA. 2018. Available online: https://www.food navigators. Com/ Article/2018/11/19/FDA approves qualified health claim for high oleic oils and reduced risk of coronary heart disease (accessed on 27 September 2022).
Fernández-Martínez, J. M., Pérez-Vich, B., & Velasco, L. (2010). Sunflower. Oil crops, 155-232.
Flagella, Z., Giuliani, M. M., Rotunno, T., Di Caterina, R., & De Caro, A. (2004). Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. European Journal of Agronomy, 21(2), 267-272.
Giannini, V., Maucieri, C., Vamerali, T., Zanin, G., Schiavon, S., Pettenella, D. M., ... & Borin, M. (2022). Sunflower: From Cortuso’s Description (1585) to Current Agronomy, Uses and Perspectives. Agriculture, 12(12), 1978.
Gogna, M., & Bhatla, S. C. (2019). Biochemical mechanisms regulating salt tolerance in sunflower. Plant Signaling & Behavior, 14(12), 1670597.
Gogna, M., Choudhary, A., Mishra, G., Kapoor, R., & Bhatla, S. C. (2020). Changes in lipid composition in response to salt stress and its possible interaction with intracellular Na+-K+ ratio in sunflower (Helianthus annuus L.). Environmental and Experimental Botany, 178, 104147.
González-Fontes, A., Navarro-Gochicoa, M. T., Ceacero, C. J., Herrera-Rodríguez, M. B., Camacho-Cristóbal, J. J., & Rexach, J. (2017). Understanding calcium transport and signaling, and its use efficiency in vascular plants. In Plant Macronutrient Use Efficiency (pp. 165-180). Academic Press.
Habibi, N., Darvishzadeh, R., & Abdollahi Mandoulakani, B. (2020). Studying the expression pattern of PMP3 and dehydrin genes in AS5305 and 9CSA3 oily sunflower lines under salt stress. Journal of Crop Breeding, 12(35), 225-237.
Hafeez, A., Arshad-Ullah, M., Rasheed, M., Mahmood, I. A., Hyder, S. I., Aamir, S. S., ... & Mahmood, T. (2017). Effect of soil salinity on germination and growth of sunflower (Helianthus annuus L.) cultivars. J Innov Bio-Res, 1, 46-51.
Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1-13.
Hameed, M., T. Nawaz, M. Ashraf, N. Naz, R. Batool, M.S.A. Ahmad, and A. Riaz, 2013. Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turkish Journal of Botany, 37, 715– 724.
Hasanuzzaman, M., Nahar, K., Fujita, M., Ahmad, P., Chandna, R., Prasad, M. N. V., & Ozturk, M. (2013). Enhancing plant productivity under salt stress: relevance of poly-omics. Salt Stress in Plants: Signalling, Omics and Adaptations, 113-156.
Heidari, A., Toorchi, M., Bandehagh, A., & Shakiba, M. R. (2011). Effect of NaCl Stress on Growth, Water Relations, Organic and Inorganic Osmolytes Accumulation in Sunflower (Helianthus annuus L.) Lines. Universal Journal of Environmental Research & Technology, 1(3).
Hilli, H. J. (2021). Review on genetics and breeding of sunflower (Helianthus annuus L.).
Hoseinpour, F., Darvishzadeh, R., & Abdollahi, B. (2019). Study on the expression of transcription factors WRKY and AP2Domain in oily sunflower under salt stress. Genetic Engineering and Biosafety Journal, 8(2), 178-188.
Hryvusevich, P., Navaselsky, I., Talkachova, Y., Straltsova, D., Keisham, M., Viatoshkin, A., ... & Demidchik, V. (2021). Sodium influx and potassium efflux currents in sunflower root cells under high salinity. Frontiers in Plant Science, 11, 613936.
Hussain, M. K., & Rehman, O. U. (1993). Breeding sunflower for salt tolerance: physiological basis for salt tolerance in sunflower (Helianthus annus L.).
Hussain, M., Farooq, M., Shehzad, M., Khan, M. B., Wahid, A., & Shabir, G. (2012). Evaluating the performance of elite sunflower hybrids under saline conditions. Int. J. Agric. Biol, 14(1), 131-135.
Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., & Zhang, J. (2019). Salinity stress in arid and semi-arid climates: Effects and management in field crops. Climate Change and Agriculture, 13.
Iqbal, A., Iftikhar, I. I., Nawaz, H., & Nawaz, M. (2014). Role of proline to induce salinity tolerance in Sunflower (Helianthus annus L.). Science Technology and Development, 33(2), 88-93.
Jabeen, N., & Ahmad, R. (2012). Improving tolerance of sunflower and safflower during growth stages to salinity through foliar spray of nutrient solutions. Pakistan Journal of Botany, 44(2), 563-572.
Jain, P., & Bhatla, S. C. (2014). Signaling role of phospholipid hydroperoxide glutathione peroxidase (PHGPX) accompanying sensing of NaCl stress in etiolated sunflower seedling cotyledons. Plant Signaling & Behavior, 9(12), e977746.
Kamran, M., Xie, K., Sun, J., Wang, D., Shi, C., Lu, Y., ... & Xu, P. (2020). Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental Safety, 188, 109877.
Katerji, N., Van Hoorn, J. W., Hamdy, A., Karam, F., & Mastrorilli, M. (1994). Effect of salinity on emergence and on water stress and early seedling growth of sunflower and maize. Agricultural Water Management, 26(1-2), 81-91.
Kaur, H., & Bhatla, S. C. (2016). Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide, 59, 42-53.
Kaur, H., Mukherjee, S., Baluska, F., & Bhatla, S. C. (2015). Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. Plant Signaling & Behavior, 10(11), e1049788.
Kaur, S., Samota, M. K., Choudhary, M., Choudhary, M., Pandey, A. K., Sharma, A., & Thakur, J. (2022). How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants, 28(2), 485-504.
Kaya, Y. (2017). The utilizing from genetic diversity of sunflower wild species for abiotic stress. In: International Conference (Vol. 135).
Keisham, M., Mukherjee, S., & Bhatla, S. C. (2018). Mechanisms of sodium transport in plants—progresses and challenges. International Journal of Molecular Sciences, 19(3), 647.
Khan, H. A., Siddique, K. H., & Colmer, T. D. (2017). Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. Journal of Experimental Botany, 68(8), 2001-2011.
Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11), e26374.
Kumari, A., Kapoor, R., & Bhatla, S. C. (2019). Nitric oxide and light co-regulate glycine betaine homeostasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity. Plant Signaling & Behavior, 14(11), 1666656.
Lai, Z., Livingstone, K., Zou, Y., Church, S. A., Knapp, S. J., Andrews, J., & Rieseberg, L. (2005). Identification and mapping of SNPs from ESTs in sunflower. Theoretical and Applied Genetics, 111, 1532-1544.
Lexer, C., Lai, Z., & Rieseberg, L. H. (2004). Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytologist, 161(1), 225-233.
Lexer, C., Welch, M., Durphy, J. L., & Rieseberg, L. H. (2003). Natural selection for salt tolerance QTL in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a homoploid hybrid species. Mol Ecol, 12, 1225-1235.
Li, J., Liu, A., Najeeb, U., Zhou, W., Liu, H., Yan, G., ... & Xu, L. (2021). Genome-wide investigation and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L.). International Journal of Biological Macromolecules, 175, 188-198.
Li, J., Liu, H., Yang, C., Wang, J., Yan, G., Si, P., ... & Xu, L. (2020). Genome-wide identification of MYB genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L. Industrial Crops and Products, 143, 111924.
Li, W., Zeng, Y., Yin, F., Wei, R., & Mao, X. (2021). Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress. Scientific reports, 11(1), 19865
Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., ... & Cheng, Q. (2020). A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Scientific Reports, 10(1), 1-9.
Lisanti, S., Carbacos, J. M., Hall, A. J., & Chimenti, C. (2012, February). Influence of water deficit and cano‐py senescene pattern on sunflower root functionality during the grain-filling phase. In Proc. 18th Intl. Sunflower Conf., Mar del Plata & Balcarce, Argentina (p. 120).
Liu, J., Dong, X. X., Zhao, Z. K., Sun, H. R., & Yu, L. X. (2023). Analysis of sunflower DNA methylation in response to salt and alkali stresses based on methylation-sensitive amplified polymorphisms. Current Plant Biology, 34, 100282.
Luo, Q., Yu, B., & Liu, Y. (2005). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of Plant Physiology, 162(9), 1003-1012.
Maia, F. M. D. A., Costa, A. C., de Castro, J. N., Megguer, C. A., & Soares, F. A. L. (2016). Photosynthesis and water relations of sunflower cultivars under salinity conditions. Afr. J. Agric. Res, 11(30), 2817-2824.
Makavitskaya, M., Svistunenko, D., Navaselsky, I., Hryvusevich, P., Mackievic, V., Rabadanova, C., ... & Demidchik, V. (2018). novel roles of ascorbate in plants: induction of cytosolic Ca2+ signals and efflux from cells via anion channels. Journal of Experimental Botany, 69(14), 3477-3489.
Mansour, M. M. F. (2023). Role of vacuolar membrane transport systems in plant salinity tolerance. Journal of Plant Growth Regulation, 42(3), 1364-1401
Mathias, J. D., Alzina, A., Grédiac, M., Michaud, P., Roux, P., De Baynast, H., ... & Wei, W. (2015). Upcycling sunflower stems as natural fibers for biocomposite applications. BioResources, 10(4), 8076-8088.
Meena, H. N., & Yadav, R. S. (2018). Effects of Reusing Peanut Seeds Grown in Saline Irrigation Water on Yield Attributes and Quality Traits. Journal of Irrigation and Drainage Engineering, 144(3), 04018002.
Meena, H. N., Yadav, R. S., Jain, N. K., & Meena, M. S. (2022). Sodium accumulation trend in the different quality seed, cultivars, and yield potential of peanut under salinity stress. Journal of Plant Nutrition, 45(20), 3129-3144.
Miladinović, D., Hladni, N., Radanović, A., Jocić, S., & Cvejić, S. (2019). Sunflower and climate change: possibilities of adaptation through breeding and genomic selection. Genomic Designing of Climate-Smart Oilseed Crops, 173-238.
Miller, J. F. (1995). Inheritance of salt tolerance in sunflower. Helia, 18, 9-16.
Miller, J. F., & Fick, G. N. (1997). The genetics of sunflower. Sunflower technology and production, 35, 441-495.
Miller, J. F., & Seiler, G. J. (2003). Registration of five oilseed maintainer (HA 429-HA 433) sunflower germplasm lines. Crop Science, 43(6), 2313.
Min, K., Liu, B., Lee, S. R., & Arora, R. (2021). Supplemental calcium improves freezing tolerance of spinach (Spinacia oleracea L.) by mitigating membrane and photosynthetic damage, and bolstering anti-oxidant and cell-wall status. Scientia Horticulturae, 288, 110212.
Morsali Aghajari, F., Darvishzadeh, R., & Gholami, G. (2020a). The effect of salt stress on morphological traits and electrophoresis pattern of proteins in recombinant inbred lines population of oilseed sunflower derived from PAC2× RHA266 cross. Environmental Stresses in Crop Sciences, 13(2), 583-600.
Morsali Aghajari, F., Darvishzadeh, R., & Razi, M. (2020b). The effects of sodium chloride stress on some biochemical characteristics and antioxidative enzymes activities in two sunflower (Helianthus annuus L.) genotypes. Journal of Plant Molecular Breeding, 8(2), 10-20.
Morsali Aghajari, F., Darvishzadeh, R., Hatami Maleki, H., Barin, M., & Hatamnia, A. A. (2015). Investigation on the reaction of sunflower recombinant inbred lines to NaCl stress at seedling stage. Applied Soil Research, 2(2), 77-91.
Morsali Aghajari, F., Darvishzadeh, R., Hatami Maleki, H., Gholinezhad, E., & Kalantar, A. (2019). Selection of salinity tolerant lines of sunflower using some physiological characteristics. Journal of Crop Breeding, 11(31), 185-195.
Moustafa-Farag, M., Elkelish, A., Dafea, M., Khan, M., Arnao, M. B., Abdelhamid, M. T., ... & Ai, S. (2020). Role of melatonin in plant tolerance to soil stressors: salinity, pH and heavy metals. Molecules, 25(22), 5359.
Mukherjee, S., & Bhatla, S. C. (2014). A novel fluorescence imaging approach to monitor salt stress‐induced modulation of ouabain‐sensitive ATPase activity in sunflower seedling roots. Physiologia Plantarum, 150(4), 540-549.
Mukherjee, S., David, A., Yadav, S., Baluška, F., & Bhatla, S. C. (2014). Salt stress‐induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiologia Plantarum, 152(4), 714-728.
Mukherjee, S., Kalra, G., & Bhatla, S. C. (2022). Trifluoperazine (TFP)-mediated fluorescence imaging approach reveals a probable calmodulin (CaM)-independent calcium signaling accompanying differential protein phosphorylation in NaCl-stressed sunflower seedlings (Helianthus annuus L. var. KBSH44). South African Journal of Botany, 150, 596-606.
Mushke, R., Yarra, R., & Kirti, P. B. (2019). Improved salinity tolerance and growth performance in transgenic sunflower plants via ectopic expression of a wheat antiporter gene (TaNHX2). Molecular Biology Reports, 46(6), 5941-5953.
Mutlu, F. A. T. M. A., & Bozcuk, S. (2005). Effects of salinity on the contents of polyamines and some other compounds in sunflower plants differing in salt tolerance. Russian Journal of Plant Physiology, 52, 29-34.
Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., & Ali, K. (2010). Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology, 9(34).
Nejadalimoradi, H. A. V. V. A., Nasibi, F. A. T. E. M. E. H., Kalantari, K. M., & Zanganeh, R. O. Y. A. (2014). Effect of seed priming with L-arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. Agric Commun, 2(1), 23-30.
Noreen, S., & Ashraf, M. (2008). Alleviation of adverse effects of salt stress on sunflower (Helianthus annuus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pak. J. Bot, 40(4), 1657-1663.
Noreen, S., Faiz, S., Akhter, M. S., & Shah, K. H. (2019). Influence of foliar application of osmoprotectants to ameliorate salt stress in sunflower (Helianthus annuus L.). Sarhad J. Agric, 35, 1316-1325.
Parsons, S., Raikova, S., & Chuck, C. J. (2020). The viability and desirability of replacing palm oil. Nature Sustainability, 3(6), 412-418.
Pilorgé, E. (2020). Sunflower in the global vegetable oil system: situation, specificities and perspectives. OCL, 27, 34.
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74.
Prakash, A. H., Vajranabhaiah, S. N., & Reddy, P. C. (1993). Effect of salt stress on callus development from hypocotyl segments of sunflower (Helianthus annuus L.) genotypes.
Ramadan, A. A., Abd Elhamid, E. M., & Sadak, M. S. (2019). Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bulletin of the National Research Centre, 43(1), 1-12.
Rasool, S., Hameed, A., Azooz, M. M., Siddiqi, T. O., & Ahmad, P. (2013). Salt stress: causes, types and responses of plants. Ecophysiology and Responses of Plants Under Salt Stress, 1-24.
Rauf, S., Shahzad, M., Teixeira da Silva, J. A., & noorka, I. R. (2012). Biomass partitioning and genetic analyses of salinity tolerance in sunflower (Helianthus annuus L.). Journal of Crop Science and Biotechnology, 15, 205-217.
Rong, M., Cheng, W., Qing, M., Peichen, H. O. U., & Xiaodong, W. A. N. G. (2017). Ion response of sunflower at sprouting stage to mixed salt stress. 中国生态农业学报 (中英文), 25(5), 720-729.
Saadia, M., Jamil, A., Ashraf, M., & Akram, N. A. (2013). Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance. Applied biochemistry and biotechnology, 170, 980-987.
Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277.
Sarkar, S., Khatun, M., Era, F. M., Islam, A. K. M., Anwar, M., Danish, S., ... & Islam, A. K. M. (2021). Abiotic stresses: Alteration of composition and grain quality in food legumes. Agronomy, 11(11), 2238.
Seiler, G. J. (1983). Evaluation of wild sunflower species for potential drought tolerance. In Proc. 5th Sunflower Research Workshop, Fargo, ND, USA, January (Vol. 26).
Seiler, G. J. (2012). Utilization of wild Helianthus species in sunflower breeding. Sunflower genetics and breeding international monogram. Novi Sad, Serbia: Serbian Academy of Sciences and Arts, 355-413.
Seiler, G. J., Qi, L. L., & Marek, L. F. (2017). Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Science, 57(3), 1083-1101.
Shahbaz, M., Ashraf, M., Akram, N. A., Hanif, A., Hameed, S., Joham, S., & Rehman, R. (2011). Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum, 33, 1113-1122.
Shan, F., Wu, Y., Du, R., Yang, Q., Liu, C., Wang, Y., ... & Chen, Y. (2023). Evolutionary analysis of the OSCA gene family in sunflower (Helianthus annuus L) and expression analysis under NaCl stress. PeerJ, 11, e15089
Sharifi Alishah, M., Darvishzadeh, R., Ahmadabadi, M., Piri Kashtiban, Y., & Hasanpur, K. (2022). Identification of differentially expressed genes in salt-tolerant oilseed sunflower (Helianthus annuus L.) genotype by RNA sequencing. Molecular Biology Reports, 49(5), 3583-3596.
Shtereva, L., Vassilevska-Ivanova, R., Kartzeva, T., & Kraptchev, B. (2015). Salt tolerance of two sunflower genotypes: Helianthus annuusand interspecific line Helianthus anuus× Helianthus mollis. Genetics and Plant Physiology, 5(1), 61-73.
Singh, B. (2006). Plant Breeding: Principles and Methods. Kalyani. In: New Delhi Publisher, India.
Singh, B.D., 2000. Plant breeding-principles and methods. Kalyani Publishers. Ludhiana, New Delhi, noida, India, pp. 1-896.
Singh, N., & Bhatla, S. C. (2018). Nitric oxide regulates lateral root formation through modulation of ACC oxidase activity in sunflower seedlings under salt stress. Plant Signaling & Behavior, 13(5), e1473683.
Singh, N., & Bhatla, S. C. (2019). Hemoglobin as a probe for estimation of nitric oxide emission from plant tissues. Plant Methods, 15(1), 1-8.
Singh, N., Bhatla, S. C., & Demidchik, V. (2019). Plants and human beings engage similar molecular crosstalk with nitric oxide under stress conditions. Functional Plant Biology, 46(8), 695-701.
Singh, N., Jain, P., Kaur, H., Arora, D., Mukherjee, S., & Bhatla, S. C. (2015). Understanding the salt tolerance mechanisms in sunflower seedlings. Advances in Plant Sciences and Biotechnology, 164.
Škorić, D. (1992). Achievements and future directions of sunflower breeding. Field Crops Research, 30(3-4), 231-270.
Škorić, D. (2009). Sunflower breeding for resistance to abiotic stresses/mejoramiento de girasol por resistencia a estreses abióticos/sélection du tournesol pour la résistance aux stress abiotiques. Helia, 32(50), 1-16.
Škorić, D. (2016). Sunflower breeding for resistance to abiotic and biotic stresses. In Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen.
Škorić, D., & Jocić, S. (2004). Achievements of sunflower breeding at the IFVC in novi Sad. In Proceedings, 16th International Sunflower Conference, 29 August-2 September 2004, Fargo, North Dakota, USA (Vol. 2, pp. 451-458). Paris: International Sunflower Association.
Škorić, D., Seiler, G. J., Liu, Z., Jan, C., Miller, J., & Laurence, C. (2012). Sunflower genetics and breeding. International monography. Novi Sad: Serbian academy of Sciences and Arts.
Song, H., Fu, X., Li, J., Niu, T., Shen, J., Wang, X., ... & Liu, A. (2022). Phylogenetic analysis and expression profiles of jasmonate ZIM-domain gene family provide insight into abiotic stress resistance in sunflower. Frontiers in Plant Science, 13, 1010404.
Sun, R., Zhang, Y., Guo, S., Yu, H., Li, S., Nie, H., & An, Y. (2021). Cloning and expression analysis of a salt-stress-induced HD-Zip transcription factor HB-12 from sunflower (Helianthus annuus L.). Molecular Plant Breeding, 12.
Taher, M., Beyaz, R., Javani, M., Gürsoy, M., & Yıldız, M. (2018). Morphological and biochemical changes in response to salinity in sunflower (Helianthus annuus L.) cultivars.
Tailor, A., Tandon, R., & Bhatla, S. C. (2019). Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress. Plant Signaling & Behavior, 14(11), 1667730.
Tang, S., Kishore, V. K., & Knapp, S. J. (2003). PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theoretical and Applied Genetics, 107, 6-19.
Tavakkoli, E., Rengasamy, P., & McDonald, G. K. (2010). High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of Faba bean under salinity stress. Journal of Experimental Botany, 61(15), 4449-4459.
Temme, A. A., Kerr, K. L., & Donovan, L. A. (2019). Vigour/tolerance trade‐off in cultivated sunflower (Helianthus annus L.) response to salinity stress is linked to leaf elemental composition. Journal of Agronomy and Crop Science, 205(5), 508-518.
Temme, A. A., Kerr, K. L., Masalia, R. R., Burke, J. M., & Donovan, L. A. (2020). Key traits and genes associate with salinity tolerance independent from vigor in cultivated sunflower. Plant Physiology, 184(2), 865-880.
Tishchenko, O. M., Komisarenko, A. G., Mykhalska, S. I., Sergeeva, L. E., Adamenko, N. I., Morgun, B. V., & Kochetov, A. V. (2014). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using LBA4404 strain harboring binary vector pBi2E with dsRNA-suppressor of proline dehydrogenase gene. Cytology and Genetics, 48, 218-226.
Tsai, Y. C., Chen, K. C., Cheng, T. S., Lee, C., Lin, S. H., & Tung, C. W. (2019). Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology, 19, 1-17.
Umar, M., & Siddiqui, Z. S. (2018). Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Botanica Croatica, 77(1), 36-44.
Umar, M., Uddin, Z., & Siddiqui, Z. S. (2019). Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica, 57(2), 627-639.
Vilvert, E., Lana, M., Zander, P., & Sieber, S. (2018). Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems, 159, 103-110.
Wahid, A., Masood, I., & Rasul, E. (1999). Phenotypic flexibility as marker of sodium chloride tolerance in sunflower genotypes. Environmental and Experimental Botany, 42(2), 85-94.
Welch, M. E., & Rieseberg, L. H. (2002). Habitat divergence between a homoploid hybrid sunflower species, Helianthus paradoxus (Asteraceae), and its progenitors. American Journal of Botany, 89(3), 472-478.
Wen-Zhi, Z. E. N. G., Chi, X. U., Jing-Wei, W. U., HUANG, J. S., Qiang, Z. H. A. O., & Mou-Song, W. U. (2014). Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus L.). Pedosphere, 24(5), 635-644.
Xu, Z., Marowa, P., Liu, H., Du, H., Zhang, C., & Li, Y. (2020). Genome-wide identification and analysis of P-type plasma membrane H+-ATPase sub-gene family in sunflower and the role of HHA4 and HHA11 in the development of salt stress resistance. Genes, 11(4), 361.
Yasmeen, T., Ahmad, A., Arif, M. S., Mubin, M., Rehman, K., Shahzad, S. M., & Wijaya, L. (2020). Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiology and Biochemistry, 156, 242-256.
Zhao, D., Yu, Y., Shen, Y., Liu, Q., Zhao, Z., Sharma, R., & Reiter, R. J. (2019). Melatonin synthesis and function: evolutionary history in animals and plants. Frontiers in Endocrinology, 10, 249.
| ||
آمار تعداد مشاهده مقاله: 389 تعداد دریافت فایل اصل مقاله: 391 |