تعداد نشریات | 41 |
تعداد شمارهها | 1,114 |
تعداد مقالات | 9,532 |
تعداد مشاهده مقاله | 17,200,851 |
تعداد دریافت فایل اصل مقاله | 12,038,248 |
Graph Feature Selection for Anti-Cancer Plant Recommendation | ||
Control and Optimization in Applied Mathematics | ||
مقاله 1، دوره 8، شماره 2، اسفند 2023، صفحه 1-15 اصل مقاله (959.29 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2023.67660.1231 | ||
نویسندگان | ||
Mahmood Amintoosi* 1؛ Eisa Kohan-Baghkheirati2 | ||
1Department of Computer Science, Hakim Sabzevari University, Sabzevar, Iran. | ||
2Department of Biology, Hakim Sabzevari University, Sabzevar, Iran. | ||
چکیده | ||
Every year, extensive experimental analysis is conducted to evaluate the anti-cancer properties of plants. Developing a well-ranked list of potential anti-cancer plants based on verified anti-cancer metabolites can significantly reduce the time and cost required for plant evaluation. This paper proposes a method for generating such a ranked list by analyzing biological graphs of plant-metabolite interactions. In this approach, graph nodes are ranked based on specific graph features. However, a challenge arises in selecting the most informative graph features that ensure the resulting ranked plant list is more relevant, prioritizing plants with greater anti-cancer properties at the top. To address this challenge, we propose the use of the Average Precision metric commonly used in information retrieval and recommender systems, to compare different ranked lists. By constructing a network that captures the similarities between plants based on their shared metabolites, and ranking plants using different combinations of graph features, we can identify the subset of features that yields a ranked list with a higher Average Precision score. This subset of features can then be considered the most suitable for recommending anti-cancer plants. The proposed method can be used to select the best graph features for screening unverified plant lists for anti-cancer properties, increasing the likelihood of identifying plants with higher scores in the list that possess anti-cancer properties. | ||
کلیدواژهها | ||
Anti-cancer plant recommendation؛ Graph feature؛ Recommender systems؛ Medicinal plants؛ Herbal medicine؛ Breast cancer؛ Stomach cancer؛ Gastric cancer؛ Gastric neoplasms | ||
مراجع | ||
[1] Abeesh, P., Guruvayoorappan, C. (2022). “Preparation and characterization of beta sitosterol encapsulated nanoliposomal formulation for improved delivery to cancer cells and evaluation of its anti-tumor activities against Daltons Lymphoma Ascites tumor models”, Journal of Drug Delivery Science and Technology, 70, 102832.
[2] Ahmed, M.M., Tazyeen, S., Ali, R., Alam, A., Imam, N., Malik, M.Z., Ali, S., Ishrat, R. (2022). “Network centrality approaches used to uncover and classify most influential nodes with their related miRNAs in cardiovascular diseases”, Gene Reports, 27, 101555.
[3] Allenspach, M., Steuer, C. (2021). “α-Pinene: A never-ending story”, Phytochemistry, 190, 112857.
[4] Amadea, I.C., Atrasina, D. (2021). “The effects of simvastatin and soursop (annona muricata) leaf extract on colorectal cancer”, Indonesian Journal of Life Sciences| ISSN, 3(1), 1-172656-0682.
[5] Behl, S., Inbanathan, A., Sundaram, M.K., Hussain, A. (2022). “Plants of the genus Annona: Source of potential anti-cancer therapeutics”, In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 741-753, Elsevier.
[6] Bouyahya, A., El Allam, A., Zeouk, I., Taha, D., Zengin, G., Goh, B.H., Catauro, M., Montesano, D., El Omari, N. (2022). “Pharmacological effects of Grifolin: Focusing on anticancer mechanisms”, Molecules, 27(1), 284.
[7] Craswell, N., Robertson, S. (2009). “Average Precision at n”, In Liu, L. and ÖZsu, M.T., editors, Encyclopedia of Database Systems, Springer US, Boston, MA, 193-194.
[8] El-Beltagy, A. E.-F.B., Elsyyad, H.I., Abdelaziz, K.K., Madany, A.S., Elghazaly, M.M. (2021). “Therapeutic role of Annona muricata fruit and bee Venom against MNU-induced breast cancer in pregnant rats and its complications on the ovaries”, Breast Cancer: Targets and Therapy, 13, 431.
[9] Gopalakrishnan, S., Sridharan, S., Nayak, S.R., Nayak, J., Venkataraman, S. (2022). “Central hubs predictionforbionetworksbydirectedhypergraph-GAwithvalidationtoCOVID-19PPI”,Pattern Recognition Letters, 153, 246-253.
[10] Hasanzadeh, M., Movahedi, M., Rejali, M., Maleki, F., Moetamani-Ahmadi, M., Seifi, S., Hosseini, Z., Khazaei, M., Amerizadeh, F., Ferns, G.A., Rezayi, M., Avan, A. (2019). “The potential
prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer”, J. Cell Physiol, 234(2), 1289-1294.
[11] Kaur, J., Mahey, S., Ahluwalia, P., Joshi, R., Kumar, R. (2022). “Role of plant secondary metabolites as anticancer and chemopreventive agents”, In Plant Secondary Metabolites, 97-119, Springer.
[12] Khan, M.I., Bouyahya, A., Hachlafi, N.E., Menyiy, N.E., Akram, M., Sultana, S., Zengin, G., Ponomareva, L., Shariati, M.A., Ojo, O.A. (2022). “Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations”, Environmental Science and Pollution Research, 1–34.
[13] Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., and Shoemaker,B.A.(2016).“PubChemsubstanceandcompounddatabases”,NucleicAcidsResearch, 44(D1), D1202-D1213.
[14] Ma, X., Yu, X., Min, J., Chen, X., Liu, R., Cui, X., Cheng, J., Xie, M., Diel, P., Hu, X. (2022a). “Genistein interferes with antitumor effects of cisplatin in an ovariectomized breast cancer xenograft tumor model”, Toxicology Letters, 355, 106-115.
[15] Ma, Y., Guo, J., Li, D., Cai, X. (2022b). “Identification of potential key genes and functional role of CENPF in osteosarcoma using bioinformatics and experimental analysis”, Experimental and Therapeutic Medicine, 23(1), 1-12.
[16] Naseri, A., Sharghi, M., Hasheminejad, S.M.H. (2021). “Enhancing gene regulatory networks inference through hub-based data integration”, Computational Biology and Chemistry, 95, 107589.
[17] Naujokat, C., McKee, D.L. (2021). “The “Big Five” phytochemicals targeting cancer stem cells: curcumin, EGCG, sulforaphane, resveratrol and genistein”, Current Medicinal Chemistry, 28(22),
4321-4342.
[18] Pagare, S., Bhatia, M., Tripathi, N., Pagare, S., Bansal, Y.K. (2015). “Secondary metabolites of plants and their role: Overview”, Current Trends in Biotechnology and Pharmacy, 9(3), 293-304.
[19] Pavlopoulos, G.A., Hooper, S.D., Sifrim, A., Schneider, R., Aerts, J. (2011). “Medusa: A tool for exploring and clustering biological networks”, BMC Research Notes, 4(1), 1-6.
[20] Rajavel, T., Mohankumar, R., Archunan, G., Ruckmani, K., Devi, K.P. (2017). “Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells”, Scientific Reports, 7(1), 1-15.
[21] Rawat, B., Dwivedi, S.K. (2019). “Selecting appropriate metrics for evaluation of recommender systems”, International Journal of Information Technology and Computer Science.
[22] Rezayi, M., Farjami, Z., Hosseini, Z.S., Ebrahimi, N., Abouzari-Lotf, E. (2018). “MicroRNA-based biosensors for early detection of cancers”, Curr Pharm Des, 24(39), 4675-4680.
[23] Shinbo, Y., Nakamura, Y., Altaf-Ul-Amin, M., Asahi, H., Kurokawa, K., Arita, M., Saito, K., Ohta, D.,Shibata,D.,Kanaya,S.(2006).“KNApSAcK: A comprehensive species-metabolite relationship database”, In Plant Metabolomics, 165-181, Springer.
[24] Sohel, M., Biswas, P., AlAmin, M., Hossain, M.A., Sultana, H., Dey, D., Aktar, S., Setu, A., Khan, M.S., Paul, P.(2022).“Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms”, Processes, 10(2), 415.
[25] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021). “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries”, CA: a cancer journal for clinicians, 71(3), 209-249.
[26] Zhang, E., Zhang, Y. (2009). “Average precision”, In Liu, L. and ÖZsu, M. T., editors, Encyclopedia of Database Systems, Springer US, Boston, MA, 192-193. | ||
آمار تعداد مشاهده مقاله: 172 تعداد دریافت فایل اصل مقاله: 134 |