تعداد نشریات | 41 |
تعداد شمارهها | 1,138 |
تعداد مقالات | 9,765 |
تعداد مشاهده مقاله | 17,902,063 |
تعداد دریافت فایل اصل مقاله | 12,512,535 |
اثرات ضد التهابی نانوذرات اکسید ایتریوم بر فیبروز کبدی در موش صحرایی | ||
فصلنامه علمی زیست شناسی جانوری تجربی | ||
دوره 12، شماره 1 - شماره پیاپی 45، شهریور 1402، صفحه 21-32 اصل مقاله (3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/eab.2023.68887.1922 | ||
نویسندگان | ||
فاطمه دانش پژوه1؛ شهربانو عریان* 1، 2؛ رامش احمدی3؛ پژمان مرتضوی4 | ||
1گروه زیستشناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
2گروه علوم جانوری، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران، ایران | ||
3گروه علوم جانوری، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد قم، قم، ایران | ||
4گروه آسیبشناسی، دانشکده علوم تخصصی دامپزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
از آنجایی که امروزه به کمک نانوپزشکی درونی سازی، نفوذ و تحویل دارو تسهیل شده است به همین سبب استفاده از نانوتکنولوژی در دارورسانی هدفمند جهت بهبود فیبروز کبدی گزینه مناسبی به نظر میرسد. موشهای نر نژاد ویستار با وزن 200 تا 250 گرم بهطور تصادفی به 5 گروه 8 تایی تقسیم شدند: کنترل (موش سالم)، شم (موش سالم + K3PO4)، CCL4 (موشهای مدل فیبروز کبدی)، Y2O3 30 (موش سالم+ 30 میلی گرم/کیلوگرمY2O3) و CCL4+ Y2O3 30 (موش فیبروتیک + 30 میلی گرم/ کیلوگرمY2O3). پس از القا فیبروز کبدی توسط CCL4، موشها Y2O3 را یک بار در روز به مدت چهار هفته دریافت کردند. در پایان موشها بیهوش شدند و خونگیری از قلب انجام شد. بخشی از نمونههای کبد در فرمالین %10 و بخشی دیگر در دمای 80- درجه سانتیگراد نگهداری شد. در نهایت، نشانگرهای استرس اکسیداتیو (CAT، GPX، SOD و MDA) و سطوح آنزیمهای کبدی (AST، ALT، ALP و GGT) با استفاده از روش الایزا اندازهگیری شدند. همچنین بیان ژنهای TGF-β و α-SMA در کبد نیز توسط روش Real Time RT-PCR بررسی گردید. استعمال دوز 30 میلی گرم/کیلو گرم از NPs Y2O3 اثر مطلوبی بر تنظیم سطوح CAT، SOD، GPX، TGF-β و α-SMA، و همچنین MDA،AST ، ALT،ALP و GGT در موشهای فیبروزی نداشت. اما بهبودی قابل توجهی در جهت کاهش التهاب در بافت کبد موشهای گروهCCL4+ Y2O3 30 مشاهده شد. دوز 30 میلی گرم/ کیلوگرم نانوذره Y2O3 تاثیر مطلوبی بر شاخصهای آنتی اکسیدانی و بیوشیمایی کبد در جهت کاهش فیبروز کبدی نداشت. اما اثرات مطلوبی از آن در بافت کبد فیبروزی موشهای تحت درمان با Y2O3 30 به ویژه کاهش التهاب مشاهده شد. | ||
کلیدواژهها | ||
Y2O3 NPs؛ فیبروز کبدی؛ CCl4 ؛ TGF-β؛ α-SMA؛ نانو ذره؛ اکسید اتریوم | ||
عنوان مقاله [English] | ||
Anti-inflammatory Effects of Yttrium Oxide Nanoparticles on Liver Fibrosis in Rats | ||
نویسندگان [English] | ||
Fatemeh Danesh Pajooh1؛ Shahrbanoo Oryan1، 2؛ Ramesh Ahmadi3؛ Pejman Mortazavi4 | ||
1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran|Department of Animal Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran | ||
3Department of Animal Sciences, Faculty of Basic Sciences, Islamic Azad University of Qom, Qom, Iran | ||
4Department of Pathology, Faculty of Specialized, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
Liver fibrosis is a reversible disease that can be caused by various causes of liver damage and ultimately lead to severe complications such as cirrhosis, liver cancer or even death. Traditional treatments have several limitations, including insufficient therapeutic effects and side effects. Since the internalization, penetration and delivery of drugs have been facilitated with the help of nanomedicine, therefore, the use of nanotechnology in targeted drug delivery to improve liver fibrosis seems to be a suitable option. Male Wistar rats weighing 200-250 g were randomly divided into 5 groups of 8: control (healthy rats), sham (healthy rats + K3PO4), CCL4 (liver fibrosis model rats), Y2O3 30 (healthy rats + 30 mg/kg Y2O3) and CCL4+ Y2O3 30 (fibrotic rats + 30 mg/kg Y2O3). After induction of liver fibrosis by CCL4, rats received Y2O3 once daily for four weeks. At the end, the rats were anesthetized and blood was taken from the heart. A part of the liver samples was kept in 10% formalin and another part was kept at -80°C. Finally, oxidative stress markers (CAT, GPX, SOD and MDA) and liver enzyme levels (AST, ALT, ALP and GGT) were measured using ELISA method. Also, the expression of TGF-β and α-SMA genes in the liver was investigated by Real Time RT-PCR method. The use of 30 mg/kg of Y2O3 NPs did not have a favorable effect on regulating the levels of CAT, SOD, GPX, TGF-β and α-SMA, as well as MDA, AST, ALT, ALP and GGT in fibrotic rats. However, a significant improvement was observed in reducing liver tissue inflammation in CCL4+ Y2O3 30 group rats. The dose of 30 mg/kg of Y2O3 nanoparticles did not have a favorable effect on the antioxidant and biochemical indices of the liver in order to reduce liver fibrosis. But its favorable effects were observed in the fibrotic liver tissue of mice treated with Y2O3 30, especially the reduction of inflammation. | ||
کلیدواژهها [English] | ||
Y2O3 NPs, Liver fibrosis, CCl4, TGF-β, α-SMA, nano particle, Ethereum oxide | ||
مراجع | ||
Abdelghffar, E. A., Obaid, W. A., Alamoudi, M. O., Mohammedsaleh, Z. M., Annaz, H., Abdelfattah, M. A., & Sobeh, M. (2022). Thymus fontanesii attenuates CCl4-induced oxidative stress and inflammation in mild liver fibrosis. Biomedicine & Pharmacotherapy, 148, 112738.
Athanasopoulou, F., Manolakakis, M., Vernia, S., & Kamaly, N. (2023). Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine, 18(1), 67-84.
Aydın, M. M., & Akçalı, K. C. (2018). Liver fibrosis. The Turkish Journal of Gastroenterology, 29(1), 14.
Caligiuri, A., Gentilini, A., Pastore, M., Gitto, S., & Marra, F. (2021). Cellular and molecular mechanisms underlying liver fibrosis regression. Cells, 10(10), 2759.
Frangogiannis, N. G. (2020). Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 217(3).
Ghaznavi, H., Najafi, R., Mehrzadi, S., Hosseini, A., Tekyemaroof, N., Shakeri-Zadeh, A., ... & Sharifi, A. M. (2015). Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurological research, 37(7), 624-632.
Gusti, A. M., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. (2021). Antioxidants-Related Superoxide Dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants, 10(4), 595.
Guyot, C., Lepreux, S., Combe, C., Doudnikoff, E., Bioulac-Sage, P., Balabaud, C., & Desmoulière, A. (2006). Hepatic fibrosis and cirrhosis: the (myo) fibroblastic cell subpopulations involved. The international journal of biochemistry & cell biology, 38(2), 135-151.
Hermansyah, D., Putra, A., Muhar, A. M., Wirastuti, K., & Dirja, B. T. (2021). Mesenchymal stem cells suppress TGF-β release to decrease α-SMA expression in ameliorating CCl4-induced liver fibrosis. Medical Archives, 75(1), 16.
Kassem, S., Arafa, M. M., Yehya, M. M., & Soliman, M. A. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology, 395(5), 593-606.
Kassem, S., Arafa, M. M., Yehya, M. M., & Soliman, M. A. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology, 395(5), 593-606.
Khaksar, M. R., Rahimifard, M., Baeeri, M., Maqbool, F., Navaei-Nigjeh, M., Hassani, S., ... & Abdollahi, M. (2017). Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas. Journal of Trace Elements in Medicine and Biology, 41, 79-90.
Li, J., Zhang, J., Zhang, B., Chen, L., Chen, G., Zhu, D., ... & Duan, Y. (2021). rSjP40 inhibited the activity of collagen type I promoter via ets-1 in HSCs. Frontiers in Cell and Developmental Biology, 9, 765616.
Li, X., Zhang, Q., Wang, Z., Zhuang, Q., & Zhao, M. (2022). Immune and Metabolic Alterations in Liver Fibrosis: A Disruption of Oxygen Homeostasis?. Frontiers in Molecular Biosciences, 8, 802251.
Mahmoodzadeh, Y., Mazani, M., & Rezagholizadeh, L. (2017). Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicology reports, 4, 455-462.
Moosavy, S. H., Eftekhar, E., Davoodian, P., Nejatizadeh, A., Shadman, M., Zare, S., & Nazarnezhad, M. A. (2023). AST/ALT ratio, APRI, and FIB-4 compared to FibroScan for the assessment of liver fibrosis in patients with chronic hepatitis B in Bandar Abbas, Hormozgan, Iran. BMC gastroenterology, 23(1), 1-7.
Navaei-Nigjeh, M., Daniali, M., Rahimifard, M., & Khaksar, M. R. (2020). Multi-organ toxicity attenuation by cerium oxide and yttrium oxide nanoparticles: Comparing the beneficial effects on tissues oxidative damage induced by sub-acute exposure to diazinon. Pharmaceutical Nanotechnology, 8(3), 225-238.
Ortiz, C., Schierwagen, R., Schaefer, L., Klein, S., Trepat, X., & Trebicka, J. (2021). Extracellular matrix remodeling in chronic liver disease. Current tissue microenvironment reports, 2, 41-52.
Panyala, A., Chinde, S., Kumari, S. I., Rahman, M. F., Mahboob, M., Kumar, J. M., & Grover, P. (2019). Comparative study of toxicological assessment of yttrium oxide nano-and microparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis, 34(2), 181-201.
Rajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, T., ... & Zhang, X. (2021). Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications. Applied Sciences, 11(5), 2172.
Ribera, J., Rodriguez-Vita, J., Cordoba, B., Portoles, I., Casals, G., Casals, E., ... & Morales-Ruiz, M. (2019). Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS One, 14(6), e0218716.
Sakboonyarat, B., Poovieng, J., Lertsakulbunlue, S., Jongcherdchootrakul, K., Srisawat, P., Mungthin, M., & Rangsin, R. (2023). Association between raised blood pressure and elevated serum liver enzymes among active-duty Royal Thai Army personnel in Thailand. BMC Cardiovascular Disorders, 23(1), 1-11.
Satilmis, B., Akbulut, S., Sahin, T. T., Dalda, Y., Tuncer, A., Kucukakcali, Z., ... & Yilmaz, S. (2023). Assessment of Liver Regeneration in Patients Who Have Undergone Living Donor Hepatectomy for Living Donor Liver Transplantation. Vaccines, 11(2), 244.
Sergazy, S., Shulgau, Z., Kamyshanskiy, Y., Zhumadilov, Z., Krivyh, E., Gulyayev, A., & Aljofan, M. (2023). Blueberry and cranberry extracts mitigate CCL4-induced liver damage, suppressing liver fibrosis, inflammation and oxidative stress. Heliyon, 9(4).
Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J., & Lv, X. (2022). New drugs for hepatic fibrosis. Frontiers in Pharmacology, 13, 874408.
Song, X., Shang, P., Sun, Z., Lu, M., You, G., Yan, S., ... & Zhou, H. (2019). Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine, 14(19), 2519-2533.
Song, X., Shang, P., Sun, Z., Lu, M., You, G., Yan, S., ... & Zhou, H. (2019). Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine, 14(19), 2519-2533.
Sun, X., Huang, X., Zhu, X., Liu, L., Mo, S., Wang, H., ... & Lin, J. (2019). HBOA ameliorates CCl4-incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways. Biomedicine & Pharmacotherapy, 115, 108901.
Sun, Y., Liu, B., Xie, J., Jiang, X., Xiao, B., Hu, X., & Xiang, J. (2022). Aspirin attenuates liver fibrosis by suppressing TGF‑β1/Smad signaling. Molecular Medicine Reports, 25(5), 1-10.
Tan, Z., Sun, H., Xue, T., Gan, C., Liu, H., Xie, Y., ... & Ye, T. (2021). Liver fibrosis: therapeutic targets and advances in drug therapy. Frontiers in cell and developmental biology, 9, 730176.
Tanaka, M., & Miyajima, A. (2016). Liver regeneration and fibrosis after inflammation. Inflammation and Regeneration, 36(1), 1-6.
Tang, K.S. (2021). Antioxidant and anti-inflammatory properties of yttrium oxide nanoparticles: new insights into alleviating diabetes. Current diabetes reviews, 17(4), 496-502.
Tanwar, S., Rhodes, F., Srivastava, A., Trembling, P.M., & Rosenberg, W.M. (2020). Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World journal of gastroenterology, 26(2), 109.
Tee, J. K., Peng, F., & Ho, H. K. (2019). Effects of inorganic nanoparticles on liver fibrosis: Optimizing a double-edged sword for therapeutics. Biochemical pharmacology, 160, 24-33.
Wang, F. D., Zhou, J., & Chen, E. Q. (2022). Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Frontiers in Pharmacology, 13, 787748.
Xu, F., Liu, C., Zhou, D., & Zhang, L. (2016). TGF-β/SMAD pathway and its regulation in hepatic fibrosis. Journal of Histochemistry & Cytochemistry, 64(3), 157-167.
Yang, L., Chen, L., Chang, Y., Wang, S., & Yang, C. (2016). Serological diagnosis of liver fibrosis by quantitative estimation of serum biomarkers using Luminex xMAP assay. Int J Clin Exp Med, 9(6), 11299-11305.
Zhang, L., Liu, C., Yin, L., Huang, C., & Fan, S. (2023). Mangiferin relieves CCl4-induced liver fibrosis in mice. Scientific Reports, 13(1), 4172.
Zhao, F., Zhou, N., Wang, J. L., Zhou, H., Zou, L. Q., Zhong, W. X., ... & Wáng, Y. X. J. (2020). Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model. Quantitative Imaging in Medicine and Surgery, 10(12), 2307. | ||
آمار تعداد مشاهده مقاله: 114 تعداد دریافت فایل اصل مقاله: 186 |