تعداد نشریات | 41 |
تعداد شمارهها | 1,131 |
تعداد مقالات | 9,681 |
تعداد مشاهده مقاله | 17,623,102 |
تعداد دریافت فایل اصل مقاله | 12,301,694 |
Solving Fractional Optimal Control-Affine Problems via Fractional-Order Hybrid Jacobi Functions | ||
Control and Optimization in Applied Mathematics | ||
مقاله 8، دوره 9، شماره 1، مرداد 2024، صفحه 149-168 اصل مقاله (901.93 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2023.68826.1243 | ||
نویسندگان | ||
Zeinab Barary؛ AllahBakhsh Yazdani Cherati* ؛ Somayeh Nemati | ||
Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. | ||
چکیده | ||
This paper proposes and analyzes an applicable approach for numerically computing the solution of fractional optimal control-affine problems. The fractional derivative in the problem is considered in the sense of Caputo. The approach is based on a fractional-order hybrid of block-pulse functions and Jacobi polynomials. First, the corresponding Riemann-Liouville fractional integral operator of the introduced basis functions is calculated. Then, an approximation of the fractional derivative of the unknown state function is obtained by considering an approximation in terms of these basis functions. Next, using the dynamical system and applying the fractional integral operator, an approximation of the unknown control function is obtained based on the given approximations of the state function and its derivatives. Subsequently, all the given approximations are substituted into the performance index. Finally, the optimality conditions transform the problem into a system of algebraic equations. An error upper bound of the approximation of a function based on the fractional hybrid functions is provided. The method is applied to several numerical examples, and the experimental results confirm the efficiency and capability of the method. Furthermore, they demonstrate a good agreement between the approximate and exact solutions. | ||
کلیدواژهها | ||
Fractional optimal control-affine problems؛ Fractional-order hybrid functions؛ Caputo derivative؛ Riemann-Liouville integral | ||
مراجع | ||
[1] Agrawal, O.P. (2004). “A general formulation and solution scheme for fractional optimal control problems”, Nonlinear Dynamics, 38, 323-337.
[2] Agrawal, O.P. (2008). “A formulation and numerical scheme for fractional optimal control problems”, Journal of Vibration and Control, 14(9-10), 1291-1299.
[3] Agrawal, O.P. (2008). “A quadratic numerical scheme for fractional optimal control problems”, ASME Journal of Dynamic Systems, Measurement and Control, 130(1), 011010.
[4] Alizadeh, A., Effati, S. (2018). “An iterative approach for solving fractional optimal control problems”, Journal of Vibration and Control, 24(1), 18-36.
[5] Barikbin, Z., Keshavarz, E. (2020). “Solving fractional optimal control problems by new Bernoulli wavelets operational matrices”, Optimal Control Applications and Methods, 41(4), 1188-1210.
[6] Behroozifar, M., Habibi, N.(2018).“ A numerical approach for solving a class of fractional optimal control problems via operational matrix Bernoulli polynomials”, Journal of Vibration and Control,
[7] Bhrawy, A.H., Ezz-Eldien, S.S., Doha, E.H., Abdelkawy, M.A., Baleanu, D. (2017). “Solving fractional optimal control problems within a Chebyshev–Legendre operational technique”, International Journal of Control, 90(6), 1230-1244.
[8] DeVore, R.A., Scott, L.R. (1984). “Error bounds for Gaussian quadrature and weighted-L1 polynomial approximation”, SIAM Journal on Numerical Analysis, 21(2), 400-412.
[9] Ezz-Eldien, S.S., Doha, E.H., Baleanu, D., Bhrawy, A.H. (2017). “A numerical approach based on Legendre orthonormal polynomials for numerical solutions of fractional optimal control problems”, Journal of Vibration and Control, 23(1), 16-30.
[10] Heydari, M.H., Avazzadeh, Z., Cattani, C. (2020). “Taylor’s series expansion method for nonlinear variable-order fractional 2D optimal control problems”, Alexandria Engineering Journal, 59(6), 4737-4743.
[11] Li, C., Cai, M. (2019). “Theory and numerical approximations of fractional integrals and derivatives”, Society for Industrial and Applied Mathematics.
[12] Lotfi, A., Yousefi, S.A., Dehghan, M. (2013). “Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule”, Journal of Computational and Applied Mathematics, 250, 143-160.
[13] Marzban, H.R., Razzaghi, M.(2006).“ Solution of multi-delay systems using hybrid of block-pulse functions and Taylor series”, Journal of Sound and Vibration, 292(3-5), 954-963.
[14] Mashayekhi, S., Razzaghi, M. (2015). “Numerical solution of nonlinear fractional integro differential equations by hybrid functions”, Engineering Analysis with Boundary Elements, 56, 81-89.
[15] Mashayekhi, S., Razzaghi, M. (2016). “Numerical solution of distributed order fractional differential equations by hybrid functions”, Journal of Computational Physics, 315, 169-181.
[16] Mohammadi, F., Moradi, L., Baleanu, D., Jajarmi, A. (2018). “A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems”, Journal of Vibration and Control, 24(21), 5030-5043.
[17] Naidu, D.S. (2003). “Optimal control systems, Electrical engineering textbook series”, CRC Press.
[18] Nemati, S. (2016). “A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems”, Sahand Communications in Mathematical Analysis, 4(1), 15-27.
[19] Nemati, S., Lima, P.M., Torres, D.F. (2019). “A numerical approach for solving fractional optimal control problems using modified hat functions”, Communications in Nonlinear Science and Numerical Simulation, 78, 104849.
[20] Podlubny, I. (1999). “Fractional differential equations”. Mathematics in Science and Engineering, Academic press, New York.
[21] Postavaru, O., Toma, A. (2021). “Numerical solution of two-dimensional fractional-order partial differential equations using hybrid functions”, Partial Differential Equations in Applied Mathematics, 4, 100099.
[22] Postavaru, O., Toma, A. (2022). “A numerical approach based on fractional-order hybrid functions of block-pulse and Bernoulli polynomials for numerical solutions of fractional optimal control problems”, Mathematics and Computers in Simulation, 194, 269-284.
[23] Rabiei, K., Razzaghi, M. (2023). “An approach to solve fractional optimal control problems via fractional-order Boubaker wavelets”, Journal of Vibration and Control, 29(7-8), 1806-1819.
[24] Razzaghi, M., Marzban, H.R. (2000). “A hybrid analysis direct method in the calculus of variations”, International Journal of Computer Mathematics, 75(3), 259-269.
[25] Razzaghi, M., Marzban, H.R. (2000). “Direct method for variational problems via hybrid of block-pulse and Chebyshev functions”, Mathematical Problems in Engineering, 6, 85-97.
[26] Shen, J., Tang, T., Wang, L.L., Shen, J., Tang, T., Wang, L.L. (2011). “Orthogonal polynomials and related approximation results”, Spectral Methods: Algorithms, Analysis and Applications, 47-140.
[27] Tricaud, C., Chen, Y. (2010). “An approximate method for numerically solving fractional order optimal control problems of general form”, Computers & Mathematics with Applications, 59(5), 1644-1655.
[28] Xiaobing, P., Yang, X., Skandari, M.H.N., Tohidi, E., Shateyi, S. (2022). “A new high accurate approximate approach to solve optimal control problems of fractional order via efficient basis functions”, Alexandria Engineering Journal, 61(8), 5805-5818.
[29] Yousefi, S.A., Lotfi, A., Dehghan, M. (2011). “The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems”, Journal of Vibration and Control, 17(13), 2059-2065.
[30] Zhang, J., Tang, Y., Liu, F., Jin, Z., Lu, Y. (2021). “Solving fractional differential equation using block pulse functions and Bernstein polynomials”, Mathematical Methods in the Applied Sciences, 44(7), 5501-5519.
[31] Zhang, B., Tang, Y., Zhang, X. (2021). “Numerical solution of fractional differential equations using hybrid Bernoulli polynomials and block pulse functions”, Mathematical Sciences, 15, 293-304. | ||
آمار تعداد مشاهده مقاله: 148 تعداد دریافت فایل اصل مقاله: 69 |