تعداد نشریات | 41 |
تعداد شمارهها | 1,139 |
تعداد مقالات | 9,775 |
تعداد مشاهده مقاله | 17,922,029 |
تعداد دریافت فایل اصل مقاله | 12,527,491 |
Mathematical Modeling and Optimal Control of Carbon Dioxide Emissions | ||
Control and Optimization in Applied Mathematics | ||
مقاله 11، دوره 9، شماره 1، مرداد 2024، صفحه 195-202 اصل مقاله (432.82 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.30473/coam.2023.67777.1233 | ||
نویسندگان | ||
Fahimeh Akhavan Ghassabzade* 1؛ Mina Bagherpoorfard2 | ||
1Department of Mathematics, Faculty of Sciences, University of Gonabad, Gonabad, Iran. | ||
2Department of Mathematics, Fasa Branch, Islamic Azad university, Fasa, Iran. | ||
چکیده | ||
This paper aims to demonstrate the flexibility of mathematical models in analyzing carbon dioxide emissions and account for memory effects. The use of real data amplifies the importance of this study. This research focuses on developing a mathematical model utilizing fractional-order differential equations to represent carbon dioxide emissions stemming from the energy sector. By comparing simulation results with real-world data, it is determined that the fractional model exhibits superior accuracy when contrasted with the classical model. Additionally, an optimal control strategy is proposed to minimize the levels of carbon dioxide, CO2, and associated implementation costs. The fractional optimal control problem is addressed through the utilization of an iterative algorithm, and the effectiveness of the model is verified by presenting comparative results. | ||
کلیدواژهها | ||
{Fractional؛ Mathematical model؛ Optimal control؛ Carbon dioxide | ||
مراجع | ||
[1] Agrawal, O.P., Defterli, O., Baleanu, D. (2016). “Fractional optimal control problems with several state and control variables”, Journal of Vibration and Control, 16, 1967-1976.
[2] Akhavan Ghassabzadeh, F., Tohidi, E., Singh, H., Shateyi, S. (2021). “RBF collocation approach to calculate numerically the solution of the nonlinear system of qFDEs”, Journal of King Saud University - Science, 33(2), 101288.
[3] Bagherpoorfard, M., Akhavan Ghassabzade, F. (2023). “Analysis and optimal control of a fractional MSD model”, Iranian Journal of Numerical Analysis and Optimization, 13(3), 481-499.
[4] Baleanu, D., Akhavan Ghassabzade, F., Nieto, J.J., Jajarmi, A. (2022). “On a new and generalized fractional model for a real Cholera outbreak”, Alexandria Engineering Journal, 61, 9175-9186.
[5] Baleanu, D., Arshad, S., Jajarmi, A., Shokat, W., Akhavan Ghassabzade, F., Wali, M. (2023). “Dynamical behaviours and stability analysis of a generalized fractional model with a real case study”, Journal of Advanced Research, 48, 157-173.
[6] BP Statistical Review of World Energy, (2019), 68th Edition, London: BP. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf. Accessed 14 March 2020.
[7] Ge, W., Li, H., Wen, X., Li, Ch., Cao, H., Xing, B. (2023). “Mathematical modelling of carbon emissions and process parameters optimisation for laser welding cell”, International Journal of Production Research, 61, 15, 5009-5028.
[8] Han, L., Sui, H., Ding, Y. (2022). “Mathematical modeling and stability analysis of a delayed carbon absorption-emission model associated with China’s adjustment of industrial structure”, Mathematics, 10(17), 3089.
[9] IEA. (2019). “Global energy & CO2 status report 2019”, https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions, Accessed 14 March, 2020.
[10] Khan, Q., Suen, A., Khan, H., Kumam, P. (2023). “Comparative analysis of fractional dynamical systems with various operators”, AIMS Mathematics, 8(6), 13943-13983.
[11] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006). “Theory and applications of fractional differential equations”, Elsevier Science, BV, Amsterdam.
[12] Lin, B., Zhu, J. (2019). “The role of renewable energy technological innovation on climate change: Empirical evidence from China”, Science of the Total Environment, 659, 1505-1512.
[13] Prakash, D.V, Sarvesh, D., Devendra, K., Jagdev, S. (2021). “A computational study of fractional model of atmospheric dynamics of carbon dioxide gas”, Chaos Solitons Fractals, 142, 110375.
[14] Srivastava, H.M., Dubey, V.P., Kumar, R., Singh, J., Kumar, D., Baleanu, D. (2020). “An efficient computationalapproachforafractional-orderbiologicalpopulationmodelwithcarryingcapacity”, Chaos, Solitons and Fractals, 138, 109880.
[15] Traore, A., Sene, N. (2020). “Model of economic growth in the context of fractional derivative”, Alexandria Engineering Journal, 59(6), 4843-4850.
[16] Verma, M., Misra, A.K. (2018). “Optimal control of anthropogenic carbon dioxide emissions through technological options: a modeling study”, Computational and Applied Mathematics, 37, 605-626.
[17] Verma, M., Verma, A.K., Misra, A.K. (2021). “Mathematical modeling and optimal control of carbon dioxide emissions from energy sector”, Environment Development and Sustainability, 23, 13919-13944. | ||
آمار تعداد مشاهده مقاله: 195 تعداد دریافت فایل اصل مقاله: 250 |