
تعداد نشریات | 41 |
تعداد شمارهها | 1,164 |
تعداد مقالات | 10,047 |
تعداد مشاهده مقاله | 18,779,069 |
تعداد دریافت فایل اصل مقاله | 13,034,401 |
بررسی ویژگیهای نوری PbO- B2O3 (سرب بورات) و Bi2O3 - B2O3 (بیسموت بورات) | ||
فصلنامه علمی اپتوالکترونیک | ||
مقاله 5، دوره 6، شماره 3 - شماره پیاپی 16، اردیبهشت 1403، صفحه 37-46 اصل مقاله (222.62 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/jphys.2024.70596.1185 | ||
نویسنده | ||
آزاده احمدیان* | ||
عضو هیئت علمی | ||
چکیده | ||
در این تحقیق، ما ویژگیهای نوری شیشههای سرب بورات و بیسموت بورات را بررسی و مقایسه میکنیم. از ضریب شکست و شکاف باند انرژی استفاده کردیم؛ که با روشهای تجربی در مرجع 22 تعیین شده بودند. دریافتیم شکست مولی و قطبشپذیری الکترونیکی رفتار مشابهی را نشان میدهند. متالیزاسیون از630/0 تا 568/0 برای شیشههای سرب بورات و از 526/0 تا 435/0 برای شیشههای بیسموت بورات با افزایش مقدار PbO/Bi2O3 متغیر است. ضریب انتقال (T) از 884/0 به 846/0 برای شیشههای PbB و از 818/0 به 751/0 برای شیشههای BiB کاهش یافت، در صورتی که ثابت دیالکتریک (ε) از 755/2 به 276/3 برای شیشههای PbB و از 094/3 به 884/4 برای شیشههای BiB افزایش یافت. الکترونگاتیویتی نوری () از 964/0 به 792/0 برای PbB و از 857/0 به 760/0 برای BiB کاهش یافت. حساسیت دیالکتریک خطی () از 139/0 به 181/0 برای شیشههای سرب بورات و از 214/0 به 309/0 برای شیشههای بیسموت بورات افزایش یافت. حساسیت دیالکتریک غیرخطی () از 13-10 647/0 تا 13-10 829/1 برای PbB و از 12-10 395/0 تا 12-10 551/1 برای BiB تغییر کرد؛ که افزایش 5 برابری را نشان میدهد. ضریب شکست غیرخطی () نیز از 12-10 470/1 به 12-10 810/3 برای شیشههای سرب بورات و از 11-10 704/0 به 11-10 646/2 برای شیشههای بیسموت بورات افزایش یافت. نتایج تایید میکند که بیسموت بورات برای کاربردهای نوری بهتر از سرب بورات است. | ||
کلیدواژهها | ||
شیشه؛ خصوصیات نوری؛ سرب بورات؛ بیسموت بورات | ||
عنوان مقاله [English] | ||
Investigation Optical Properties of PbO-B2O3 (Lead Borate) and Bi2O3 - B2O3 (Bismuth Borate) | ||
نویسندگان [English] | ||
Azadeh Ahmadian | ||
Faculty member | ||
چکیده [English] | ||
In this research, we investigate and compare the optical properties of lead borate and bismuth borate glasses. We used the Refractive index and the energy band gaps determined experimentally in Ref [22]. We found that molar refraction and electronic polarizability demonstrate similar behavior. The metallization varies from 0.630 to 0.568 for lead borate glasses and from 0.526 to 0.435 for bismuth borate glasses with increasing PbO/Bi2O3 content. The transmission coefficient decreased from 0.884 to 0.846 for PbB glasses and from 0.818 to 0.751 for BiB glasses, while the dielectric constant increased from 2.755 to 3.276 for PbB glasses and from 3.094 to 4.884 for BiB glasses. The optical electronegativity decreased from 0.964 to 0.792 for PbB and from 0.857 to 0.760 for BiB. The linear dielectric susceptibility increased from 0.139 to 0.181 for lead borate glasses and from 0.214 to 0.309 for bismuth borate glasses. The nonlinear optical susceptibility changed from 0.647 to 1.829 esu for PbB and from 0.359 to 1.551 esu for BiB , indicating more than fivefold increment. The nonlinear refraction index varied from 1.470 to 3.810 esu for lead borate glasses and from 0.704 to 2.646 esu for bismuth borate glasses. The results confirm that bismuth borate is better than lead borate for optical applications | ||
کلیدواژهها [English] | ||
Glass, Optical Properties, Lead Borate, Bismuth Borate | ||
مراجع | ||
[1] Y. S. Rammah, M. I. Sayyed, A. A. Ali, H. O. Tekin, R. El‑Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses, Appl. Phys. A 124 (2018) 832.
[2] J.M.P. Almeida, R.D. Fonseca, L. De Boni, A.R.S. Diniz, A.C. Hernandes, P.H.D. Ferreira, C.R. Mendonca, Waveguides and nonlinear index of refraction of borate glass doped with transition metals, Opt. Mater. 42 (2015) 522–525.
[3] K. L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview, Prog. Photovoltaics Res. Appl. 12 (2004) 69–92.
[4] F.A. Al-Agel, Structural and optical properties of Te doped Ge–Se phase-change thin films: a material for optical storage, Mater. Sci. Semicond. Process. 18 (2014) 36–41.
[5] V. Dimitrov, S. Kim, T. Yoko, T. Sakka, Third harmonic generation in PbOSiO2 and PbO-B2O3 glasses, J. Ceram. Soc. Jpn. 101 (1993) 59–63.
[6] J. Joanna Pisarska, Luminescence behavior of Dy3+ ions in lead borate glasses, Opt. Mater. 31 (2009) 1784–1786
[7] X. Zhao, X. Wang, H. Lin, Z. Wang, Correlation among Electronic Polarizability, Optical Basicity and Interaction Parameter of Bi2O3-B2O3 Glasses, Physica B 390 (2007) 293–300.
[8] I. Opera, H. Hesse, K. Betzler, Optical Properties of Bismuth Borate Glasses, Opt. Mater. 26 (2004) 235–237.
[9] M.B. Saisudha, J. Ramakrishna, Effect of host glass on the optical absorption properties of Nd3+, Sm3+, and Dy3+ in lead borate glasses, Phys. Rev. B. 53 (1996) 6186–6196.
[10] M.B. Saisudha, K.S.R. Koteshwara Rao, H.L. Bhat, J. Ramakrishna, The fluorescence of Nd3+ in lead borate and bismuth borate glasses with large stimulated emission cross section, J. Appl. Phys. 80 (1996) 4845–4853.
[11] M.B. Saisudha, J. Ramakrishna, Optical absorption of Nd3+, Sm3+ and Dy3+ in bismuth borate glasses with large radiative transition probabilities, Opt. Mater. 18 (2002) 403–417.
[12] M. Bengisu, Borate glasses for scientific and industrial applications: A review. J. Mater. Sci. 51 (2016) 2199.
[13] S. Mukamil, Ikram Ullah, C. Sarumaha, S.M. Wabaidur, M.A. Islam, S.A. Khattak, S. Kothan, M. Shoaib, I. Khan, I. Ullah, J. Kaewkhao, G. Rooh, Lead-borate glass system doped with Sm3+ ions for the X-ray shielding applications, Results in Physics,Volume 43 (2022) 106121.
[14] Z. I. Takaia, R. S. Kaundald, M. K. Mustafaa, S. Asmanb, A. Idrisf, Y. Shehue, J. Mohammadd, M. G. Idrisg, M. Saidc, Gamma Ray and FTIR Studies in Zinc Doped Lead Borate Glasses for Radiation Shielding Application, Mat. Res. 22 (1) (2019) 20180404.
[15] G. P. Singh, J. Singh, P. Kaur, T. Singh, R. Kaur, D.P. Singh, The role of lead oxide in PbO-B2O3 glasses for solid state ionic devices, Materials Physics and Mechanics. 47 (2021) 951-961.
[16] Y. S. Rammah, M. I. Sayyed, A. A. Ali, H. O. Tekin, R. El‑Mallawany, Optical properties and gamma-shielding features of bismuth borate glasses, Appl. Phys. A 124 (2018) 832.
[17] M. Asri, M. Ahmadi, V. Zanganeh, Study of optical properties and comprehensive shielding behaviors for neutron and gamma-ray of 60Bi2O3-(40-x) B2O3-xBaO glass system, Results Phys. 52 (2023) 106824.
[18] M. G. Dong, M. I. Sayyed, G. Lakshminarayana, M. Çelikbilek Ersundu, A. E. Ersundu, P. Nayar and M. A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, J. Non-Cryst. Solids. 468 (2017) 12.
[19] M. I. Sayyed, G. Lakshminarayana, M. G. Dong, M. Çelikbilek Ersundu, A. E. Ersundu and I. V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses, Radiat. Phys. Chem. 145 (2018) 26.
[20] M. Kamislioglu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters, Results Phys. 22 (2021) 103844.
[21] N. M. Bobkova, Properties and structure of bismuth-borate glasses (review), Glass and Ceramics. 72 (2016).
[22] S. B. Mallur, T. Czarnecki, A. Adhikari, P. K. Babu, Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses, j. materresbull. 68 (2015) 27.
[23] I. Sharma, P. Sharma, A. S. Hassanien, Optical properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35-xTe50 films, J. Non- Cryst. Solids 590 (2022) 121673.
[24] R. El-Mallawany, Y.S. Rammah, F.I. El-Agawany, Sandro Marcio Lima, C. Mutuwong, M. S. Al-Buriahi, Evaluation of optical features and ionizing radiation shielding competences of TeO2–Li2O (TL) glasses via Geant4 simulation code and Phy-X/PSD program. Opt. Mater. 108 (2020) 110394.
[25] S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. J. Non-Cryst. Solids 471 (2017) 101–109.
[26] V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys. 79 (1996) 1741.
[27] J.A. Duffy, Bonding, Energy Level and Bonds in Inorganic Solids (Longman, England, 1990).
[28] Marc Dussauze, Thierry Cardinal. Nonlinear optical properties of glass. J. David Musgraves; Juejun Hu; Laurent Calvez. Springer handbook of glass, Springer International Publishing (2019) 157-189.
[29] H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4 (2002) 381–386.
[30] K. Terashima, T. H. Shimoto, T. Yoko, Structure and nonlinear optical properties of PbO-Bi2O3-B2O3 glasses, Phys. Chem. Glasses, 38(4) (1997) 211.
[31] Zhengda Pan, Steven H. Morgan, Bryan H. Long, | ||
آمار تعداد مشاهده مقاله: 129 تعداد دریافت فایل اصل مقاله: 118 |