تعداد نشریات | 41 |
تعداد شمارهها | 1,129 |
تعداد مقالات | 9,667 |
تعداد مشاهده مقاله | 17,602,507 |
تعداد دریافت فایل اصل مقاله | 12,289,651 |
ژنهای خانواده FAD در گستره ژنوم ریزجلبک اسپیرولینا (Arthrospira platensis) و بررسی عملکردهای سلولی در پاسخ به تنشهای غیر زیستی | ||
فصلنامه علمی زیست فناوری گیاهان زراعی | ||
دوره 14، شماره 1 - شماره پیاپی 47، آبان 1403، صفحه 87-106 اصل مقاله (3.02 M) | ||
نوع مقاله: علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/cb.2024.70853.1963 | ||
نویسندگان | ||
سحر فرجی1؛ قربانعلی نعمت زاده2؛ سیدکمال کاظمی تبار3؛ علی پاکدین پاریزی* 4 | ||
1دانشکده علوم زراعی، گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری | ||
2استاد، گروه مهندسی ژنتیک و بیولوژی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران | ||
3دانشیار، گروه اصلاح نباتات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران | ||
4گروه مرکبات و گیاهان دارویی، پژوهشکده ژنتیک و زیست فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران | ||
چکیده | ||
ریزجلبک Arthrospira platensis یک پروکاریوت فتوسنتزکننده ارزشمند با مصارف صنعتی و غذایی متعدد میباشد. آنزیمهای اسید چرب دساچوراز (FADs) مسئول تولید اسیدهای چرب غیراشباع تک و چندگانه هستند. در مطالعه حاضر با استفاده از راهکارهای بیوانفورماتیکی، ژنوم A. platensis C1 به منظور شناسایی ژنهای خانواده ApFAD بررسی شد. تعداد 8 ژن ApFAD در ژنوم اسپیرولینا شناسایی و به گروههای Omega، Sphingolipid، CrtR_beta-carotene-hydroxylase و Acyl-CoA، طبقهبندی شدند. چهار موتیف هیستیدینی حفاظت شده که برای اتصال به ساختارهای دای-آهن و فعالیتهای کاتالیزوری ضروری هستند، شناسایی شدند. بررسی تغییرات پس از ترجمه پروتئینهای ApFAD طیف گستردهای از تغییرات گلیکوزیلاسیون و فسفریلاسیون را نشان داد. بررسی نواحی پروموتری ژن FAD انواع مختلفی از عناصر تنظیمی سیس پاسخگو به فیتوهورمونها و شرایط تنش، بهویژه در دساچورازهای امگا (ApFAD-6) و آسیل-لیپید (ApFAD-3) را نمایان ساخت. همچنین، شبکههای برهمکنش پروتئین-پروتئین تعامل بین ApFADها و ژنهای دخیل در مقابله با تنش به واسطه فرآیند بیوسنتزی متابولیتهای ثانویه و نیز انتقال الکترون را نشان دادند. آنالیز دادههای RNA-seq ژنهای ارتولوگ در آرابیدوپسیس، پتانسیل ژنهای گروه امگا و آسیل-لیپید در اسپیرولینا، مانند ژنهای ApFAD-3، ApFAD-6 و ApFAD-7، را در پاسخ به تنشهای محیطی مختلف نشان داد. بطورکلی، نتایج این تحقیق میتواند به درک و شناخت کاملتر عملکرد ژنهای FAD در اسپیرولینا کمک کرده و زمینه را برای دستورزی این ژنها با هدف افزایش محتوای اسیدهای چرب غیراشباع و بهبود ارزش تغذیهای روغنها و نیز افزایش تحمل گیاهان به تنشهای محیطی مختلف فراهم نماید. | ||
کلیدواژهها | ||
ارزیابی بیوانفورماتیکی؛ اسید چرب دساچوراز؛ آنالیز ژنوم؛ تحمل تنش؛ Arthrospira platensis | ||
موضوعات | ||
بیوانفورماتیک | ||
عنوان مقاله [English] | ||
Identification of FAD family genes in the genome of Spirulina (Arthrospira platensis) microalgae and investigation of cellular functions in response to abiotic stresses | ||
نویسندگان [English] | ||
Sahar Faraji1؛ Ghorbanali Nematzadeh2؛ Seyed Kamal Kazemitabar3؛ Ali Pakdin-Parizi4 | ||
1Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran | ||
2Professor, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran | ||
3Associated Professor, Department of Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran | ||
4Citrus and medicinal plants department, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran | ||
چکیده [English] | ||
Arthrospira platensis (Spirulina) is a valuable photosynthesizing prokaryote with numerous industrial and food applications. Fatty acid desaturase enzymes (FADs) are responsible for the production of monounsaturated and polyunsaturated fatty acids. In the present study, the genome of A. platensis C1 was investigated using bioinformatics methods in order to identify ApFAD genes family. A total of 8 ApFAD genes were identified in Spirulina genome and classified into Omega, Sphingolipid, CrtR_beta-carotene-hydroxylase and Acyl-CoA groups. Four conserved histidine motifs that are essential for binding to the di-iron structures and catalytic activities were identified. Investigation of post-translational modifications of ApFAD proteins revealed a wide range of glycosylation and phosphorylation changes. Evaluation of FAD gene promoter regions revealed different types of cis-regulatory elements responsive to phytohormones and stress conditions, especially in Omega (ApFAD-6) and Acyl-lipid (ApFAD-3) desaturases. Also, protein-protein interaction networks showed the relations between ApFADs and genes involved in dealing with stresses through the biosynthetic process of secondary metabolites and electron transfer. Analysis of RNA-seq data of orthologous genes in Arabidopsis showed the potential of Omega and Acyl-lipid genes, such as ApFAD-3, ApFAD-6 and ApFAD-7, in response to various environmental stresses. In general, the results of this study can contribute to a more complete understanding of the function of FAD genes in Spirulina and lay the basis for the transgenic study of these genes with the aim of increasing the content of unsaturated fatty acids, improving the nutritional value of oils, as well as promoting the stress tolerance of plants. | ||
کلیدواژهها [English] | ||
Arthrospira platensis, Bioinformatic analysis, Fatty acid desaturase, Genome analysis, Stress dealing | ||
مراجع | ||
Abedi, E., & Sahari, M. A. (2014). Long‐chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food science & nutrition, 2(5), 443-463.
Alonso, D. L., Garcia-Maroto, F., Rodriguez-Ruiz, J., Garrido, J., & Vilches, M. (2003). Evolution of the membrane-bound fatty acid desaturases. Biochemical systematics and ecology, 31(10), 1111-1124.
An, M., Mou, S., Zhang, X., Zheng, Z., Ye, N., Wang, D., Zhang, W., & Miao, J. (2013). Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresource Technology, 149, 77-83.
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic acids research, 37(suppl_2), W202-W208.
Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., Khanna, A., Marshall, M., Moxon, S., & Sonnhammer, E. L. (2004). The Pfam protein families database. Nucleic acids research, 32(suppl_1), D138-D141.
Bationo, F., Savadogo, A., Kabore, D., Ouattara, L., Ouedraogo, H. G., Savadogo, B., & Traore, A. (2015). Storage influence on beta-carotene and alpha-tocopherol contents of solar-dried Spirulina platensis (Spirulina). African journal of food Science, 9(12), 546-554.
Cao, J., Li, M., Chen, J., Liu, P., & Li, Z. (2016). Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Scientific reports, 6(1), 1-13.
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant, 13(8), 1194-1202.
Chen, C., Yang, J., Tong, H., Li, T., Wang, L., & Chen, H. (2019). Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.). Scientific reports, 9(1), 1-11.
Chi, X., Yang, Q., Lu, Y., Wang, J., Zhang, Q., Pan, L., Chen, M., He, Y., & Yu, S. (2011). Genome-wide analysis of fatty acid desaturases in soybean (Glycine max). Plant molecular biology reporter, 29(4), 769-783.
Choudhary, P., Nagar, R., Singh, V., Bhat, A. H., Sharma, Y., & Rao, A. (2019). ProGlycProt V2. 0, a repository of experimentally validated glycoproteins and protein glycosyltransferases of prokaryotes. Glycobiology, 29(6), 461-468.
Ciferri, O., & Tiboni, O. (1985). The biochemistry and industrial potential of Spirulina. Annual review of microbiology, 39(1), 503-526.
Connor, K. M., SanGiovanni, J. P., Lofqvist, C., Aderman, C. M., Chen, J., Higuchi, A., Hong, S., Pravda, E. A., Majchrzak, S., & Carper, D. (2007). Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature medicine, 13(7), 868-873.
de Jong, A., Pietersma, H., Cordes, M., Kuipers, O. P., & Kok, J. (2012). PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC genomics, 13, 1-10.
Díaz, M. L., Cuppari, S., Soresi, D., & Carrera, A. (2018). In silico analysis of fatty acid desaturase genes and proteins in grasses. Applied biochemistry and biotechnology, 184(2), 484-499.
Diraman, H., Koru, E., & Dibeklioglu, H. (2009). Fatty acid profile of Spirulina platensis used as a food supplement.
Domínguez, T., Hernández, M. L., Pennycooke, J. C., Jiménez, P., Martínez-Rivas, J. M., Sanz, C., Stockinger, E. J., Sánchez-Serrano, J. J., & Sanmartín, M. (2010). Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant physiology, 153(2), 655-665.
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. (2022). Nucleic acids research, 50(W1), W345-W351.
Garcia-Hernandez, M., Berardini, T., Chen, G., Crist, D., Doyle, A., Huala, E., Knee, E., Lambrecht, M., Miller, N., & Mueller, L. A. (2002). TAIR: a resource for integrated Arabidopsis data. Functional & integrative genomics, 2, 239-253.
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. e., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. Springer.
Hajiahmadi, Z., Abedi, A., Wei, H., Sun, W., Ruan, H., Zhuge, Q., & Movahedi, A. (2020). Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC genomics, 21(1), 1-20.
Hashiguchi, A., & Komatsu, S. (2016). Impact of post-translational modifications of crop proteins under abiotic stress. Proteomes, 4(4), 42.
Hoiczyk, E. (2000). Gliding motility in cyanobacteria: observations and possible explanations. Archives of microbiology, 174, 11-17.
Im, Y. J., Han, O., Chung, G. C., & Cho, B. H. (2002). Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Molecules and cells, 13(2), 264-271.
Jia, Y.-L., Wang, Y.-Z., Nong, F.-T., Ma, W., Huang, P.-W., & Sun, X.-M. (2022). Identification and characterization of fatty acid desaturases in Schizochytrium sp. HX-308. Algal Research, 67, 102861.
Kanehisa, M. (2002). The KEGG database. ‘In silico’simulation of biological processes: Novartis Foundation Symposium 247,
Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A., & Farmaki, T. (2008). Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). Journal of experimental botany, 59(8), 2043-2056.
Kaur, N., Chugh, V., & Gupta, A. K. (2014). Essential fatty acids as functional components of foods-a review. Journal of food science and technology, 51(10), 2289-2303.
Kazanecki, C. C., Uzwiak, D. J., & Denhardt, D. T. (2007). Control of osteopontin signaling and function by post‐translational phosphorylation and protein folding. Journal of cellular biochemistry, 102(4), 912-924.
Khan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and therapeutic potential of Spirulina. Current pharmaceutical biotechnology, 6(5), 373-379.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547.
Kumar, V., Jaiswal, K. K., Tomar, M. S., Rajput, V., Upadhyay, S., Nanda, M., Vlaskin, M. S., Kumar, S., & Kurbatova, A. (2021). Production of high value-added biomolecules by microalgae cultivation in wastewater from anaerobic digestates of food waste: a review. Biomass Conversion and Biorefinery, 1-18.
Lee, J. M., Lee, H., Kang, S., & Park, W. J. (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients, 8(1), 23.
Li-Beisson, Y., Shorrosh, B., Beisson, F., Andersson, M. X., Arondel, V., Bates, P. D., Baud, S., Bird, D., DeBono, A., & Durrett, T. P. (2013). Acyl-lipid metabolism. The Arabidopsis book/American Society of Plant Biologists, 11.
Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102(1), 123-129.
Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y., & Chen, F. (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 102(1), 106-110.
Liu, W., Li, W., He, Q., Daud, M. K., Chen, J., & Zhu, S. (2015). Characterization of 19 genes encoding membrane-bound fatty acid desaturases and their expression profiles in Gossypium raimondii under low temperature. PloS one, 10(4), e0123281.
Lomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome research, 28(7), 1079-1089.
Lu, J., Xu, Y., Wang, J., Singer, S. D., & Chen, G. (2020). The Role of Triacylglycerol in Plant Stress Response. Plants (Basel), 9(4).
Lupatini, A. L., Colla, L. M., Canan, C., & Colla, E. (2017). Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3), 724-732.
Maddaly, R. (2010). The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr. Diet. Suppl. 73. In.
Mazo, V., Gmoshinskiĭ, I., & Zilova, I. (2004). Microalgae Spirulina in human nutrition. Voprosy pitaniia, 73(1), 45-53.
Michaelson, L. V., Zauner, S., Markham, J. E., Haslam, R. P., Desikan, R., Mugford, S., Albrecht, S., Warnecke, D., Sperling, P., & Heinz, E. (2009). Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant physiology, 149(1), 487-498.
Miller, M. L., Soufi, B., Jers, C., Blom, N., Macek, B., & Mijakovic, I. (2009). NetPhosBac–a predictor for Ser/Thr phosphorylation sites in bacterial proteins. Proteomics, 9(1), 116-125.
Moreno, P., Fexova, S., George, N., Manning, J. R., Miao, Z., Mohammed, S., Muñoz-Pomer, A., Fullgrabe, A., Bi, Y., & Bush, N. (2022). Expression Atlas update: gene and protein expression in multiple species. Nucleic acids research, 50(D1), D129-D140.
Nilamyani, A. N., Auliah, F. N., Moni, M. A., Shoombuatong, W., Hasan, M. M., & Kurata, H. (2021). PredNTS: improved and robust prediction of nitrotyrosine sites by integrating multiple sequence features. International Journal of Molecular Sciences, 22(5), 2704.
Offermanns, S. (2017). Hydroxy-carboxylic acid receptor actions in metabolism. Trends in Endocrinology & Metabolism, 28(3), 227-236.
Racine, R. A., & Deckelbaum, R. J. (2007). Sources of the very-long-chain unsaturated omega-3 fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Current Opinion in Clinical Nutrition & Metabolic Care, 10(2), 123-128.
Ramazi, S., & Zahiri, J. (2021). Post-translational modifications in proteins: resources, tools and prediction methods. Database, 2021, baab012.
Rao, P. K., Roxas, B. A., & Li, Q. (2008). Determination of global protein turnover in stressed mycobacterium cells using hybrid-linear ion trap-fourier transform mass spectrometry. Analytical chemistry, 80(2), 396-406.
Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in applied microbiology, 51, 1-52.
Schuchardt, J. P., Huss, M., Stauss-Grabo, M., & Hahn, A. (2010). Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. European journal of pediatrics, 169, 149-164.
Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P., & Bork, P. (2000). SMART: a web-based tool for the study of genetically mobile domains. Nucleic acids research, 28(1), 231-234.
Singh, A. K., Fu, D.-Q., El-Habbak, M., Navarre, D., Ghabrial, S., & Kachroo, A. (2011). Silencing genes encoding omega-3 fatty acid desaturase alters seed size and accumulation of Bean pod mottle virus in soybean. Molecular plant-microbe interactions, 24(4), 506-515.
Soria-García, Á., Rubio, M. C., Lagunas, B., López-Gomollón, S., Luján, M. d. l. Á., Díaz-Guerra, R., Picorel, R., & Alfonso, M. (2019). Tissue distribution and specific contribution of Arabidopsis FAD7 and FAD8 plastid desaturases to the JA-and ABA-mediated cold stress or defense responses. Plant and Cell Physiology, 60(5), 1025-1040.
Szklarczyk, D., Morris, J. H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A., Doncheva, N. T., Roth, A., & Bork, P. (2016). The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research, gkw937.
Tang, W., Ouyang, C., Liu, L., Li, H., Zeng, C., Wang, J., Fu, L., Wu, Q., Zeng, B., & He, B. (2018). Genome-wide identification of the fatty acid desaturases gene family in four Aspergillus species and their expression profile in Aspergillus oryzae. AMB Express, 8(1), 169.
Tonon, T., Sayanova, O., Michaelson, L. V., Qing, R., Harvey, D., Larson, T. R., Li, Y., Napier, J. A., & Graham, I. A. (2005). Fatty acid desaturases from the microalga Thalassiosira pseudonana. The FEBS journal, 272(13), 3401-3412.
Tora, L., & Timmers, H. T. M. (2010). The TATA box regulates TATA-binding protein (TBP) dynamics in vivo. Trends in biochemical sciences, 35(6), 309-314.
Umarov, R. K., & Solovyev, V. V. (2017). Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PloS one, 12(2), e0171410.
Van Tuerenhout, D. R. (2005). The Aztecs: new perspectives. Bloomsbury Publishing USA.
Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC plant biology, 16, 1-10.
Wan, D., Wu, Q., & Kuča, K. (2021). Spirulina. In Nutraceuticals (pp. 959-974). Elsevier.
Wang, P., Li, C., Wang, Y., Huang, R., Sun, C., Xu, Z., Zhu, J., Gao, X., Deng, X., & Wang, P. (2014). Identification of a geranylgeranyl reductase gene for chlorophyll synthesis in rice. Springerplus, 3, 1-9.
Wu, T., Yu, L., Zhang, Y., & Liu, J. (2021). Characterization of fatty acid desaturases reveals stress-induced synthesis of C18 unsaturated fatty acids enriched in triacylglycerol in the oleaginous alga Chromochloris zofingiensis. Biotechnology for Biofuels, 14(1), 184.
Yan, Y., Jiang, J.-Y., Fu, M., Wang, D., Pelletier, A. R., Sigdel, D., Ng, D. C. M., Wang, W., & Ping, P. (2023). MIND-S is a deep-learning prediction model for elucidating protein post-translational modifications in human diseases. Cell Reports Methods, 3(3), 100430.
Yu, C.-S., Cheng, C.-W., Su, W.-C., Chang, K.-C., Huang, S.-W., Hwang, J.-K., & Lu, C.-H. (2014). CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PloS one, 9(6), e99368.
Zárate, R., el Jaber-Vazdekis, N., Tejera, N., Pérez, J. A., & Rodríguez, C. (2017). Significance of long chain polyunsaturated fatty acids in human health. Clinical and translational medicine, 6, 1-19.
Zhao, Q., Xie, Y., Zheng, Y., Jiang, S., Liu, W., Mu, W., Liu, Z., Zhao, Y., Xue, Y., & Ren, J. (2014). GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic acids research, 42(W1), W325-W330.
Zhiguo, E., Chen, C., Yang, J., Tong, H., Li, T., Wang, L., & Chen, H. (2019). Genome-wide analysis of fatty acid desaturase genes in rice (Oryza sativa L.). Scientific reports, 9(1), 19445.
| ||
آمار تعداد مشاهده مقاله: 151 تعداد دریافت فایل اصل مقاله: 87 |