تعداد نشریات | 41 |
تعداد شمارهها | 1,129 |
تعداد مقالات | 9,669 |
تعداد مشاهده مقاله | 17,610,958 |
تعداد دریافت فایل اصل مقاله | 12,295,485 |
مدلسازی شبکه ژنی و تنظیمی الگوهای رونوشتی در القای سامانه دفاعی کلزا در برابر Sclerotinia sclerotiorum | ||
فصلنامه علمی زیست فناوری گیاهان زراعی | ||
دوره 14، شماره 1 - شماره پیاپی 47، آبان 1403، صفحه 67-86 اصل مقاله (3.02 M) | ||
نوع مقاله: علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.30473/cb.2024.71791.1973 | ||
نویسندگان | ||
هنگامه طاهری* 1؛ محمد حامد قدوم پاریزی پور2 | ||
1استادیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان. ملاثانی. ایران. | ||
2دانشیار، گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان. ملاثانی. ایران. | ||
چکیده | ||
پوسیدگی ساقه اسکلروتینیایی (SSR) که توسط قارچ خاکزاد Sclerotinia sclerotiorum ایجاد میشود، علاوه بر کاهش 10-20 درصدی عملکرد محصول، منجر به کاهش کیفیت بذر در کلزا (Brassica napus) میشود. عامل مهار زیستی Pseudomonas chlororaphis PA23 قادر است با القاء مقاومت سیستمیک، گیاه کلزا را از اثرات مخرب قارچ همیبیوتروف S. sclerotiorum مصون نگه دارد. با این حال سازوکار ملکولی القای مقاومت در برابر این بیمارگر تا حدود زیادی ناشناخته است. از این رو در مطالعه حاضر، الگوهای رونوشتی در گیاه کلزا با استفاده از سیستم کنترل زیستی باکتری PA23 مورد بررسی قرار گرفت تا با بررسی شبکههای برهمکنش پروتئین-پروتئین (PPI) بهویژه تمرکز بر ژنهای کلیدی (Hub genes) احتمالی، هستی شناسی ژنها (Gene Ontology)، مسیرهای بیوشیمیایی و بررسی شبکههای تنظیمی از طریق بررسی پروموتر ژنهای کلیدی و پیشبینی miRNAها در برهمکنش گیاه-بیمارگر، به اطلاعات جامعتری از پاسخ گیاه کلزا پیش تیمار شده با PA23 در برابر آلودگی S. sclerotiorum رسید. با استفاده از الگوریتمهای محاسباتی افزونه CytoHubba در نرمافزار Cytoscape، گرههایی (Nodes) با بیشترین درجه برهمکنشی با سایر ژنها در شبکه ژنی تحت عنوان ژنهای کلیدی شناسایی شدند که عمدتاً در حفظ و بازیابی مسیرهای متابولیکی و فعالیت فتوسنتزی، کنترل وضعیت اکسیداسیون/ احیای (redox) سلولی، بیوسنتز اسیدهای آمینه آروماتیک و هورمونهای گیاهی، فعالسازی پیامرسانهای دفاعی وابسته به MAPK، تنظیم اسیمیلاسیون سولفور و بیوسنتز سیستئین نقش داشتند. همچنین تحلیل خوشهبندی شبکه با استفاده از الگوریتم IPCA در افزونه Cytocluster، ماژولهای عملکردی را که عمدتاً در بیوسنتز اسیدهای آمینه آروماتیک و تولید متابولیتهای دفاعی در مسیر شیکیمات نقش داشتند را به عنوان مسیرهای اصلی پاسخ دفاعی حاصل از PA23 در برابر SSR معرفی کرد. آنالیز پروموتر ژنهای کلیدی در ناحیه5′UTR ، عناصر تنظیمی سیس (CRE) متنوعی نظیر موتیفهای وابسته به پیامرسان اکسین را در تنظیم پاسخهای دفاعی بر علیه آلودگی S. sclerotiorum شناسایی کرد. پیشبینی miRNAهایی که با ژنهای کلیدی برهمکنش دارند، با استفاده از برنامه وب محور psRNATarget، miRNAهای متعلق به خانوادههای miR172، miR395، miR6028، miR6029، miR6032، miR6035، miR166، miR156، miR396 و miR824 را به عنوان عناصر اصلی شبکه تنظیمی بیان ژنهای کلیدی معرفی کرد. شناخت این برهمکنشها در القای سامانه دفاعی کلزا در برابر آلودگی قارچی SSR میتواند به توسعه سیستمهای کنترل بیولوژیکی جهت مدیریت بیماریهای گیاهی و حفاظت از سیستمهای زراعی کمک کند و مکانیسمهای پایه جهت ایجاد واریتههای متحمل به بیماری را توسعه دهد. | ||
کلیدواژهها | ||
پوسیدگی ساقه اسکروتینیایی؛ توالی یابی RNA؛ ریزRNAها؛ ژنهایی با بیان متمایز؛ شبکههای برهمکنش پروتئینی | ||
موضوعات | ||
بیوتکنولوژی بیماریهای گیاهی | ||
عنوان مقاله [English] | ||
Gene and regulatory network modeling of transcriptomic patterns in defense priming of rapeseed against Sclerotinia sclerotiorum infection | ||
نویسندگان [English] | ||
Hengameh Taheri1؛ Mohamad Hamed Ghodoum Parizi pour2 | ||
1Assistant Professor, Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran | ||
22. Associate Prof, Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran. | ||
چکیده [English] | ||
Sclerotinia stem rot (SSR), caused by the soil-borne fungus Sclerotinia sclerotiorum, adversely impacts seed quality in rapeseed (Brassica napus) causing a 10-20% reduction in crop yield. The biological control agent Pseudomonas chlororaphis PA23 can protect rapeseed from the deleterious effects of the hemibiotrophic fungus S. sclerotiorum by inducing systemic resistance. However, little is known about the molecular mechanisms underlying defense priming and its regulatory processes. In this study, we amid to identify the protein-protein interaction (PPI) networks, with a particular focus on potential hub genes, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and regulatory network analysis including hub genes promoter analysis and miRNA prediction in canola plants pre-treated by PA23 in the presence of S. sclerotiorum using transcriptome data. Using the computational algorithms of the CytoHubba plugin in the Cytoscape platform, nodes with the highest interactions within the gene network were identified as hub genes, which are mainly involved in the maintenance and retrieval of metabolic pathways and photosynthetic activities, controlling cellular oxidation/reduction (redox) status, biosynthesis of aromatic amino acids and plant hormones, activation of MAPK-mediated defense signals, regulation of sulfur assimilation and cysteine biosynthesis. Using clustering analysis based on the IPCA algorithm in the Cytocluster plugin, functional modules effective in defense priming against SSR infection were identified. These modules were primarily involved in the biosynthesis of aromatic amino acids and the production of defensive metabolites in the shikimate pathway. The promoter analysis of 5′UTR region of hub genes identified various cis-regulatory elements (CREs), such as auxin signaling-responsive motifs involved in regulating defense responses against S. sclerotiorum infection. Prediction of miRNAs targeting hub genes, using the web-based psRNATarget program, revealed that miRNAs belonging to the families miR172, miR395, miR6028, miR6029, miR6032, miR6035, miR166, miR156, miR396 and miR824 play key roles as regulatory elements in the gene expression network of hub genes. These findings can aid in establishing biological control systems for plant disease management and protection of agricultural systems, as well as in advancing the fundamental mechanisms for developing disease-tolerant varieties. | ||
کلیدواژهها [English] | ||
Biological control, microRNAs, protein interaction networks, RNA sequencing, Sclerotinia stem rot | ||
مراجع | ||
Achard, P., Herr, A., Baulcombe, D. C., & Harberd, N. P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development, 131, 3357-3365.
Achary, V. M. M., Sheri, V., Manna, M., Panditi, V., Borphukan, B., Ram, B., ... & Reddy, M. K. (2020). Overexpression of improved EPSPS gene results in field level glyphosate tolerance and higher grain yield in rice. Plant Biotechnology Journal, 18(12), 2504-2519.
Aggarwal, R. A. K., Kumar, A., & Thakur, H. L. (1997). Effect of Sclerotinia rot on oil quality in low erucic acid cultivars of rapeseed. Cruciferae Newsletter, 19, 103-104.
Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10), 3523-3543.
Barbetti, M. J., Banga, S. K., Fu, T. D., Li, Y. C., Singh, D., Liu, S. Y., ... & Banga, S. S. (2014). Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica, 197, 47-59.
Bastien, M., Sonah, H., & Belzile, F. (2014). Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping‐by‐sequencing approach. The Plant Genome, 7(1), 1-13.
Benstein, R. M., Ludewig, K., Wulfert, S., Wittek, S., Gigolashvili, T., Frerigmann, H., ... & Krueger, S. (2013). Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. The Plant Cell, 25(12), 5011-5029.
Bolton, M. D., Thomma, B. P., & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7(1), 1-16.
Buske, F. A., Bodén, M., Bauer, D. C., & Bailey, T.L. (2010). Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics, 26(7), 860-866.
Chen, Y. P., Xing, L. P., Wu, G. J., Wang, H. Z., Wang, X. E., Cao, A. Z., & Chen, P. D. (2007). Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant and Cell Physiology, 48(12), 1702-1712.
Cheng, M. C., Ko, K., Chang, W. L., Kuo, W. C., Chen, G. H., & Lin, T. P. (2015). Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. The Plant Journal, 83(5), 926-939.
Chew, W., Hrmova, M., & Lopato, S. (2013). Role of homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. International Journal of Molecular Sciences, 14(4), 8122-8147.
Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M.T., & Lin, C.Y. (2014). CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8, 1-7.
Chittem, K., Yajima, W. R., Goswami, R. S., & del Río Mendoza, L. E. (2020). Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One, 15(3), e0229844.
Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95: 27-42.
Cséke, C., & Buchanan, B. B. (1986). Regulation of the formation and utilization of photosynthate in leaves. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 853(1), 43-63.
Derbyshire, M. C., & Denton‐Giles, M. (2016). The control of sclerotinia stem rot on oilseed rape (Brassica napus), current practices and future opportunities. Plant Pathology, 65(6), 859-877.
Dhingra, Y., Lahiri, M., Bhandari, N., Kaur, I., Gupta, S., Agarwal, M., & Katiyar-Agarwal, S. (2023). Genome-wide identification, characterization, and expression analysis unveil the roles of pseudouridine synthase (PUS) family proteins in rice development and stress response. Physiology and Molecular Biology of Plants, 29(12),1981-2004.
Ding, L. N., Li, M., Guo, X. J., Tang, M. Q., Cao, J., Wang, Z., ... & Tan, X. L. (2020). Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. Plant Biotechnology Journal, 18(5), 1255-1270.
Djami-Tchatchou, A. T., Harrison, G. A., Harper, C. P., Wang, R., Prigge, M. J., Estelle, M., & Kunkel, B. N. (2020). Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. Molecular Plant-Microbe Interactions, 33(8), 1059-1071.
Duke, K. A., Becker, M. G., Girard, I. J., Millar, J. L., Dilantha Fernando, W. G., Belmonte, M. F., & de Kievit, T. R. (2017). The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC Genomics, 18, 1-16.
FAO. (2022). Agricultural production statistics 2000-2020. FAOSTAT analytical brief series no. 41.
Fernando, W. G. D., Nakkeeran, S., Zhang, Y., & Savchuk, S. (2007). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 26(2), 100-107.
Garcia‐Ruiz, H. (2019). Host factors against plant viruses. Molecular Plant Pathology, 20(11), 1588-1601.
Ghanta, S., Bhattacharyya, D., Sinha, R., Banerjee, A., & Chattopadhyay, S. (2011). Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta, 233: 895-910.
Guo, H. S., Xie, Q., Fei, J. F., & Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. The Plant Cell, 17(5), 1376-1386.
Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., & Noble, W. S. (2007). Quantifying similarity between motifs. Genome Biology, 8, 1-9.
Hajduch, M., Casteel, J. E., Hurrelmeyer, K. E., Song, Z., Agrawal, G. K., & Thelen, J. J. (2006). Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiology, 141(1), 32-46.
Hawku, M. D., Goher, F., Islam, M. A., Guo, J., He, F., Bai, X., ... & Guo, J. (2021). TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici. International Journal of Molecular Sciences, 22(4), 2080.
Hewezi, T., Maier, T. R., Nettleton, D., & Baum, T. J. (2012). The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiology, 159(1), 321-335.
Hossain, M. M., Sultana, F., Li, W., Tran, L. S. P., & Mostofa, M. G. (2023). Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the pathogenomic features of a global pathogen. Cells, 12(7), 1063.
Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59(1), 41-66.
Hu, P., Meng, Y., & Wise, R. P. (2009). Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley–powdery mildew interactions. Molecular Plant-Microbe Interactions, 22(3), 311-320.
Ishibashi, K., Masuda, K., Naito, S., Meshi, T., & Ishikawa, M. (2007). An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proceedings of the National Academy of Sciences, 104(34), 13833-13838.
Jahan, R., Siddique, S. S., Jannat, R., & Hossain, M. M. (2022). Cosmos white rot: First characterization, physiology, host range, disease resistance, and chemical control. Journal of Basic Microbiology, 62(8), 911-929.
Jian, H., Ma, J., Wei, L., Liu, P., Zhang, A., Yang, B., ... & Liu, L. (2018). Integrated mRNA, sRNA, and degradome sequencing reveal oilseed rape complex responses to Sclerotinia sclerotiorum (Lib.) infection. Scientific Reports, 8(1), 10987.
Jian, H., Wang, J., Wang, T., Wei, L., Li, J., & Liu, L. (2016). Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Frontiers in Plant Science, 7, 658.
Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329.
Kabbage, M., Yarden, O., & Dickman, M. B. (2015). Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Science, 233, 53-60.
Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30.
Kazemi Oskuei, B. K., Yin, X., Hashiguchi, A., Bandehagh, A., & Komatsu, S. (2017). Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics, 1865(9), 1167-1177.
Khangura, R., Beard, C., & Hills, A. (2015). Managing sclerotinia stem rot in canola. Department of Agriculture and Food. Australian Government.
Kopriva, S. (2006). Regulation of sulfate assimilation in Arabidopsis and beyond. Annals of Botany, 97(4), 479-495.
Künstler, A., Király, L., Kátay, G., Enyedi, A. J., & Gullner, G. (2019). Glutathione can compensate for salicylic acid deficiency in tobacco to maintain resistance to tobacco mosaic virus. Frontiers in Plant Science, 10, 1115.
Li, C. X., Li, H., Sivasithamparam, K., Fu, T. D., Li, Y. C., Liu, S. Y., & Barbetti, M. J. (2006). Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and Australian Brassica napus and Brassica juncea germplasm and its relation with stem diameter. Australian Journal of Agricultural Research, 57(10), 1131-1135.
Li, M., Li, D., Tang, Y., Wu, F., & Wang, J. (2017). CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. International Journal of Molecular Sciences, 18(9), 1880.
Li, Q., Gao, Y., & Yang, A. (2020). Sulfur homeostasis in plants. International Journal of Molecular Sciences, 21(23), 8926.
Li, X., Yu, B., Wu, Q., Min, Q., Zeng, R., Xie, Z., & Huang, J. (2021). OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genetics, 17(8), e1009699.
Liu, Q., Zhang, Y. C., Wang, C. Y., Luo, Y. C., Huang, Q. J., Chen, S. Y., ... & Chen, Y. Q. (2009). Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Letters, 583(4), 723-728.
Ma, N., Sun, P., Li, Z. Y., Zhang, F. J., Wang, X. F., You, C. X., ... & Zhang, Z. (2024). Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology, 4(1), 2.
Maeda, H., & Dudareva, N. (2012). The shikimate pathway and aromatic amino acid biosynthesis in plants. Annual Review of Plant Biology, 63(1),73-105.
Muthamilarasan, M., & Prasad, M. (2013). Plant innate immunity: an updated insight into defense mechanism. Journal of Biosciences, 38, 433-449.
Nakai, Y., & Maruyama-Nakashita, A. (2020). Biosynthesis of sulfur-containing small biomolecules in plants. International Journal of Molecular Sciences, 21(10), 3470.
Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., ... & Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772), 436-439.
Pal, K. K., & McSpadden Gardene, B. (2006). Biological control of plant pathogens. The plant Health Instructor, 2(5), 1117-1142.
Parthasarathy, A., Cross, P. J., Dobson, R. C., Adams, L. E., Savka, M. A., & Hudson, A. O. (2018). A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in Molecular Biosciences, 5, 29.
Pazhamala, L. T., Kudapa, H., Weckwerth, W., Millar, A. H., & Varshney, R. K. (2021). Systems biology for crop improvement. The Plant Genome, 14(2), e20098.
Pelham, J. (1966). Resistance in tomato to tobacco mosaic virus. Euphytica, 15(2), 258-267.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347-375.
Poritsanos, N., Selin, C., Fernando, W. G., Nakkeeran, S., & Kievit, T. D. (2006). A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Canadian Journal of Microbiology, 52(12), 1177-1188.
Priestman, M. A., Healy, M. L., Funke, T., Becker, A., & Schönbrunn, E. (2005). Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Letters, 579(25), 5773-5780.
Prioretti, L., Gontero, B., Hell, R., & Giordano, M. (2014). Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Frontiers in Plant Science, 5, 597.
Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011a). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49(1), 317-343.
Robert‐Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya, Y., & Jones, J. D. (2011b). The microRNA miR393 re‐directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. The Plant Journal, 67(2), 218-231.
Rubio, B., Cosson, P., Caballero, M., Revers, F., Bergelson, J., Roux, F., & Schurdi‐Levraud, V. (2019). Genome‐wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (Tu MV) interactions in the field. New Phytologist, 221(4), 2026-2038.
Saharan, G. S., & Mehta, N. (2008). Sclerotinia diseases of crop plants: biology, ecology and disease management. Springer Science & Business Media.
Santos-Sánchez, N. F., Salas-Coronado, R., Hernández-Carlos, B., & Villanueva-Cañongo, C. (2019). Shikimic acid pathway in biosynthesis of phenolic compounds. Plant Physiological Aspects of Phenolic Compounds, 1, 1-15.
Sasaki, N., Matsumaru, M., Odaira, S., Nakata, A., Nakata, K., Nakayama, I., ... & Nyunoya, H. (2015). Transient expression of tobacco BBF1-related Dof proteins, BBF2 and BBF3, upregulates genes involved in virus resistance and pathogen defense. Physiological and Molecular Plant Pathology, 89: 70-77.
Sekula, B., Ruszkowski, M., & Dauter, Z. (2018). Structural analysis of phosphoserine aminotransferase (Isoform 1) from Arabidopsis thaliana–the enzyme involved in the phosphorylated pathway of serine biosynthesis. Frontiers in Plant Science, 9, 876.
Sønderby, I. E., Geu-Flores, F., & Halkier, B. A. (2010). Biosynthesis of glucosinolates–gene discovery and beyond. Trends in Plant Science, 15(5), 283-290.
Spooner, D. M., Gavrilenko, T., Jansky, S. H., Ovchinnikova, A., Krylova, E., Knapp, S., & Simon, R. (2010). Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota). American Journal of Botany, 97(12), 2049-2060.
Stallings, W. C., Abdel-Meguid, S. S., Lim, L. W., Shieh, H. S., Dayringer, H. E., Leimgruber, N. K., ... & Kishore, G. M. (1991). Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: a distinctive protein fold. Proceedings of the National Academy of Sciences, 88(11), 5046-5050.
Sullivan, C. S., & Ganem, D. (2005). MicroRNAs and viral infection. Molecular Cell, 20(1), 3-7.
Sun, T., Zhou, Q., Zhou, Z., Song, Y., Li, Y., Wang, H. B., & Liu, B. (2022). SQUINT Positively Regulates Resistance to the Pathogen Botrytis cinerea via miR156–SPL9 Module in Arabidopsis. Plant and Cell Physiology, 63(10), 1414-1432.
Tarver, J. E., Sperling, E. A., Nailor, A., Heimberg, A. M., Robinson, J. M., King, B. L., ... & Peterson, K. J. (2013). miRNAs: small genes with big potential in metazoan phylogenetics. Molecular Biology and Evolution, 30(11), 2369-2382.
Tian, B., Xie, J., Fu, Y., Cheng, J., Li, B. O., Chen, T., ... & Jiang, D. (2020). A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases. The ISME Journal, 14(12), 3120-3135.
Tzin, V., & Galili, G. (2010). The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. The Arabidopsis book/American Society of Plant Biologists, 8, e0132.
Wang, H., Lin, J., Li, X. G., & Chang, Y. (2015). Genome-wide identification of pear HD-Zip gene family and expression patterns under stress induced by drought, salinity, and pathogen. Acta Physiologiae Plantarum, 37(9), 189.
Wu, J., Cai, G., Tu, J., Li, L., Liu, S., Luo, X., ... & Zhou, Y. (2013). Identification of QTLs for resistance to Sclerotinia stem rot and BnaC. IGMT5. a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PloS One, 8(7), e67740.
Wu, J., Zhao, Q., Yang, Q., Liu, H., Li, Q., Yi, X., ... & Zhou, Y. (2016). Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Scientific Reports, 6(1), 19007.
Xie, L., Jian, H., Dai, H., Yang, Y., Liu, Y., Wei, L., ... & Liu, L. (2023). Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. BMC Plant Biology, 23(1), 479.
Xu, B., Gong, X., Chen, S., Hu, M., Zhang, J., & Peng, Q. (2021). Transcriptome analysis reveals the complex molecular mechanisms of Brassica napus–Sclerotinia sclerotiorum interactions. Frontiers in Plant Science, 12, 716935.
Yan, L. Y., Zhang, H. J., Zheng, Y. Q., Cong, Y. Q., Liu, C. T., Fan, F., ... & Duan, M. J. (2021). Transcription factor OsMADS25 improves rice tolerance to cold stress. Yi Chuan= Hereditas, 43(11), 1078-1087.
Yang, X., Zhang, M., Xi, D., Yin, T., Zhu, L., Yang, X., ... & Liu, X. (2024). Genome-wide identification and expression analysis of the MADS gene family in sweet orange (Citrus sinensis) infested with pathogenic bacteria. Peer J, 12, e17001.
Yin, H., Hong, G., Li, L., Zhang, X., Kong, Y., Sun, Z., ... & He, Y. (2019). miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana. Phytopathology, 109(4), 632-642.
Yu, Y. H., Bian, L., Wan, Y. T., Jiao, Z. L., Yu, K. K., Zhang, G. H., & Guo, D. L. (2019). Grape (Vitis vinifera) VvDOF3 functions as a transcription activator and enhances powdery mildew resistance. Plant Physiology and Biochemistry, 143, 183-189
Zhang, L. L., Li, Y., Zheng, Y. P., Wang, H., Yang, X., Chen, J. F., ... & Wang, W. M. (2020). Expressing a target mimic of miR156fhl-3p enhances rice blast disease resistance without yield penalty by improving SPL14 expression. Frontiers in Genetics, 11, 327.
Zhang, Y., Fernando, W. G., Kievit, T. R. D., Berry, C., Daayf, F., & Paulitz, T. C. (2006). Detection of antibiotic-related genes from bacterial biocontrol agents with polymerase chain reaction. Canadian Journal of Microbiology, 52(5), 476-481.
Zhou, S., Richter, A., & Jander, G. (2018). Beyond defense: multiple functions of benzoxazinoids in maize metabolism. Plant and Cell Physiology, 59(8), 1528-1537.
Zimmermann, S. E., Blau, S., Frerigmann, H., & Krueger, S. (2021). The phosphorylated pathway of serine biosynthesis is crucial for indolic glucosinolate biosynthesis and plant growth promotion conferred by the root endophyte Colletotrichum tofieldiae. Plant Molecular Biology, 107(1), 85-100.
Zomorodian, A., Kavoosi, Z., & Momenzadeh, L. (2011). Determination of EMC isotherms and appropriate mathematical models for canola. Food and Bioproducts Processing, 89(4), 407-413.
Zuo, D. P., Wang, B., Liu, Y. Z., Chen, Z. S., Hu, R. J., He, M. J., ... & Han, C. G. (2024). The triose phosphate/phosphate translocator exports photosynthetic glyceraldehyde 3-phosphate from chloroplasts to trigger antimicrobial immunity in plants. bioRxiv, 2024-01.
| ||
آمار تعداد مشاهده مقاله: 99 تعداد دریافت فایل اصل مقاله: 50 |